✔ Soal Dan Pembahasan Seleksi Akademik Masuk Sma Unggul Del Laguboti Tahun 2020 (*Matematika Smp Hots)
Catatan calon guru yang kita diskusikan ketika ini akan membahas Soal Matematika Soal Seleksi Akademik Masuk Sekolah Menengan Atas Unggul DEL tahun 2020 (*Matematika SMP HOTS). Seleksi akademik masuk Sekolah Menengan Atas Unggul DEL yakni seleksi tahap awal, selanjutnya akan ada beberapa tahapan seleksi, antara lain Psikologi, Kesehatan, dan dilanjutkan dengan Wawancara. Siswa yang dinyatakan lolos seleksi hingga tahap akhir, akan diterima untuk tinggal di asrama dan bersekolah di Sekolah Menengan Atas Unggul DEL Laguboti.
Sekolah Menengan Atas Unggul DEL Laguboti yakni salah satu sekolah yang konsisten dalam memajukan pendidikan di Indonesia khususnya pendidikan di Sumatera Utara, sehingga setiap tahun siswa yang ikut seleksi masuk Sekolah Menengan Atas Unggul DEL Laguboti selalu meningkat. Peminat yang ikut seleksi masuk Masuk Sekolah Menengan Atas Unggul DEL Laguboti setiap tahun bukan hanya dari Sumatera Utara saja, tetapi dari banyak sekali provinsi yang ada di Indonesia.
Karena para siswa yang berminat masuk Masuk Sekolah Menengan Atas Unggul DEL Laguboti berasal dari banyak sekali provinsi dan umumnya yakni para juara di kelas sewaktu SMP, sehingga seleksi masuk Sekolah Menengan Atas Unggul DEL ini menjadi tolak ukur sebuah SMP (SMP). Dengan kata lain "Jika siswa 'SMPN 2 Tarabintang' banyak masuk Sekolah Menengan Atas Unggul DEL Laguboti maka dengan sendirinya 'SMPN 2 Tarabintang' yakni SMP favorit atau SMP unggulan di mata masyarakat.
Soal Seleksi Akademik masuk Masuk Sekolah Menengan Atas Unggul DEL tiap tahun yang diujikan juga terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi.
Meskipun perkembangan kurikulum dan teknologi mempengaruhi perkembangan soal seleksi masuk Masuk Sekolah Menengan Atas Unggul DEL setiap tahun, tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal yang sudah diujikan panitia Seleksi Akademik Masuk Sekolah Menengan Atas Unggul DEL pada tahun 2020 ini sangat baik dijadikan latihan dasar sebagai materi persiapan dan latihan dalam bernalar.
Mari kita diskusikan beberapa soal matematika seleksi Akademik Masuk Sekolah Menengan Atas Unggul DEL Laguboti tahun 2020:
1. Nilai dari $\left (1-\dfrac{1}{2} \right )\left (1-\dfrac{1}{3} \right )\left (1-\dfrac{1}{4} \right ) \cdots \left (1-\dfrac{1}{2020} \right )$ adalah...
$(A)\ \dfrac{1}{2011}$
$(B)\ \dfrac{1}{2013}$
$(C)\ \dfrac{1}{2015}$
$(D)\ \dfrac{1}{2020}$
Eksplorasi:
$\left (1-\dfrac{1}{2} \right )\left (1-\dfrac{1}{3} \right )\left (1-\dfrac{1}{4} \right )\ \cdots \left (1-\dfrac{1}{2020} \right )$
- $1-\dfrac{1}{2}=\dfrac{2}{2}-\dfrac{1}{2}=\dfrac{1}{2}$
- $1-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}$
- $1-\dfrac{1}{4}=\dfrac{4}{4}-\dfrac{1}{4}=\dfrac{3}{4}$ $\vdots$
- $1-\dfrac{1}{2015}=\dfrac{2015}{2015}-\dfrac{1}{2015}=\dfrac{2014}{2015}$
- $1-\dfrac{1}{2020}=\dfrac{2020}{2020}-\dfrac{1}{2020}=\dfrac{2015}{2020}$
$\left (1-\dfrac{1}{2} \right )\left (1-\dfrac{1}{3} \right )\left (1-\dfrac{1}{4} \right )\ \cdots \left (1-\dfrac{1}{2020} \right )$
$=\dfrac{1}{2} \cdot \dfrac{2}{3} \cdot \dfrac{3}{4}\ \cdots \dfrac{2014}{2015} \cdot \dfrac{2015}{2020}$
$=\dfrac{1}{{\color{Red} 2}} \cdot \dfrac{{\color{Red} 2}}{{\color{Red} 3}} \cdot \dfrac{{\color{Red} 3}}{{\color{Red} 4}}\ \cdots \dfrac{{\color{Red} 2\color{Red}0\color{Red}1\color{Red}4}}{{\color{Red}2\color{Red}0\color{Red}1\color{Red}5}} \cdot \dfrac{{\color{Red} 2\color{Red}0\color{Red}1\color{Red}5}}{2020}$
$=\dfrac{1}{2020}$
$\therefore$ Pilihan yang sesuai yakni $(D)\ \dfrac{1}{2020}$
2. Untuk setiap bilangan lingkaran positip $x,y$ didefenisikan $x \Delta y=\dfrac{xy}{y-x}$. Nilai $x$ yang memenuhi persamaan $(x \Delta 6)=4(x \Delta 3)$ adalah...
$\begin{align}
(A)\ & 9 \\
(B)\ & 5 \\
(C)\ & 4 \\
(D)\ & 2
\end{align}$
Dari defenisi yang diberikan $x \Delta y=\dfrac{xy}{y-x}$, maka kita peroleh;
$\begin{align}
(x \Delta 6) & = 4(x \Delta 3) \\
\dfrac{x \cdot 6}{6-x} & = 4 \left(\dfrac{x \cdot 3}{3-x} \right) \\
\dfrac{6x}{6-x} & = 4 \left( \dfrac{3x}{3-x} \right) \\
\dfrac{6x}{6-x} & = \dfrac{12x}{3-x} \\
\text{sama-sama}\ & \text{dibagi}\ (6x) \\
\dfrac{1}{6-x} & = \dfrac{2}{3-x} \\
3-x & = 2(6-x) \\
3-x & = 12-2x \\
-x+2x & = 12-3 \\
x & = 9
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 9$
3. Suatu survei dilakukan pada siswa kelas X MIA Sekolah Menengan Atas Unggul Del untuk mengetahui yang berminat mengikuti kegiatan Teater. Hasil survei yakni sebagai berikut:
Rasio total siswa putri dan total siswa putra kelas X di sekolah tersebut adalah...
- $25 \%$ dari total siswa putra dan $50 \%$ dari total siswa putri ternyata berminat mengikuti kegiatan tersebut;
- $90 \%$ dari total peminat kegiatan Teater yakni siswa putri.
$\begin{align}
(A)\ & 9:1 \\
(B)\ & 9:2 \\
(C)\ & 9:3 \\
(D)\ & 9:4
\end{align}$
Misalkan jumlah keseluruhan Putra$=Pa$ dan Putri$=Pi$
Dari informasi pada soal bahwa yang berminat mengikuti teater yakni $25 \%$ dari total siswa putra berarti yang ikut teater yakni $\dfrac{1}{4}\ Pa$;
$50 \%$ dari total siswa putri berarti putri yang ikut teater yakni $\dfrac{1}{2}\ Pi$
Total yang mengikuti teater yakni $25 \% Pa+50 \% Pi$
$90 \%$ dari total peminat kegiatan Teater yakni siswa putri, maka:
$\begin{align}
90 \% \times \left( 25 \% Pa+50 \% Pi \right) & = 50 \% Pi \\
\dfrac{9}{10} \times \left( \dfrac{1}{4} Pa+\dfrac{1}{2} Pi \right) &= \dfrac{1}{2} Pi \\
\dfrac{1}{4} Pa+\dfrac{1}{2} Pi &= \dfrac{10}{9} \cdot \dfrac{1}{2} Pi \\
\dfrac{1}{4} Pa+\dfrac{1}{2} Pi &= \dfrac{5}{9} Pi \\
\dfrac{1}{4} Pa &= \dfrac{5}{9} Pi - \dfrac{1}{2} Pi \\
\dfrac{1}{4} Pa &= \dfrac{10}{18} Pi - \dfrac{9}{18} Pi \\
\dfrac{1}{4} Pa &= \dfrac{1}{18} Pi \\
\dfrac{Pa}{4} &= \dfrac{Pi}{18} \\
\dfrac{Pa}{Pi} &= \dfrac{4}{18}=\dfrac{2}{9} \\
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 9:2$
4. Perhatikan contoh berikut:
Banyak lingkaran pada contoh ke-50 adalah...
$\begin{align}
(A)\ & 1275 \\
(B)\ & 1326 \\
(C)\ & 1452 \\
(D)\ & 1546
\end{align}$
Dari gambar sanggup kita ambil beberapa informasi, yaitu:
- banyak lingkaran pada contoh $[1]=3=1+2$; ekuivalen dengan $S_{2}$ pada deret aritmatika dimana $a=1$; $b=1$; $n=2$
- banyak lingkaran pada contoh $[2]=6=1+2+3$; ekuivalen dengan $S_{3}$ pada deret aritmatika dimana $a=1$; $b=1$; $n=3$
- banyak lingkaran pada contoh $[3]=10=1+2+3+4$; ekuivalen dengan $S_{4}$ pada deret aritmatika dimana $a=1$; $b=1$; $n=4$
- banyak lingkaran pada contoh $[4]=15=1+2+3+4+5$; ekuivalen dengan $S_{5}$ pada deret aritmatika dimana $a=1$; $b=1$; $n=5$
Banyak lingkaran contoh ke-50 sama dengan $S_{51}$ pada deret aritmatika dimana $a=1$; $b=1$; $n=51$;
$\begin{align}
S_{n} &= \dfrac{n}{2} \left( 2a +(n-1)b \right) \\
S_{51} &= \dfrac{51}{2} \left( 2(1) +(51-1)1 \right) \\
&= \dfrac{51}{2} \left( 2 +(50) \right) \\
&= \dfrac{51}{2} (52) \\
&= 1326
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 1326$
5. Banyak angka $17^{2}$ muncul pada akar semoga persamaan
$\sqrt{17^{2}+17^{2}+ \cdots+17^{2}}=17^{2}+17^{2}+17^{2}$ bernilai benar adalah...
$\begin{align}
(A)\ & 17 \\
(B)\ & 289 \\
(C)\ & 2601 \\
(D)\ & 4913
\end{align}$
$\sqrt{17^{2}+17^{2}+ \cdots +17^{2}}=17^{2}+17^{2}+17^{2}$ bernilai benar;
$\sqrt{17^{2}+17^{2}+ \cdots +17^{2}}=3 \times 17^{2}$
(kedua ruas dikuadratkan)
$17^{2}+17^{2}+ \cdots +17^{2}=\left( 3 \times 17^{2} \right)^{2}$
$17^{2}+17^{2}+ \cdots +17^{2}= 9 \times 17^{2} \times 17^{2}$
$17^{2}+17^{2}+ \cdots +17^{2}= {\color{Red} 9} {\color{Red} \times} {\color{Red} 1}{\color{Red} 7^{\color{Red} 2}} \times 17^{2}$
Dari hasil diatas sanggup kita simpulkan:
$\sqrt{17^{2}+17^{2}+ \cdots +17^{2}}=17^{2}+17^{2}+17^{2}$
$\sqrt{{\color{Red} 9} {\color{Red} \times} {\color{Red} 1}{\color{Red} 7^{\color{Red} 2}} \times 17^{2}}=17^{2}+17^{2}+17^{2}$
Banyak $17^{2}$ yang di dalam akar yakni $9 \times 17^{2}=2601$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 2601$
6. Jika $x=2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{x}}}}$ maka nilai $x$ adalah...
$\begin{align}
(A)\ & 3 \\
(B)\ & 4 \\
(C)\ & 5 \\
(D)\ & 6
\end{align}$
Bentuk soal $x=2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{x}}}}$ ekuivalen dengan bentuk soal $x=2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{\cdots}}}}$ sehingga
persamaan $x=2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{2+\dfrac{3}{x}}}}$
sanggup kita ubah mejadi:
$\begin{align}
x & = 2+\dfrac{3}{x} \\
x^{2} & = 2x+3 \\
x^{2} -2x -3 & = 0 \\
(x+1)(x-3) & = 0 \\
x & = -1\ \text{(TM)} \\
x & = 3
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 3$
7. Banyaknya bilangan real yang memenuhi $x^{2020}+x^{2020}-x^{2015}=x^{2014}$ adalah...
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 3
\end{align}$
$\begin{align}
x^{2020}+x^{2020}-x^{2015} & =x^{2014} \\
x^{2020}+x^{2020}-x^{2015}-x^{2014} & =0 \\
\left(x^{2020} -x^{2015} \right )+\left(x^{2020} -x^{2014} \right ) & =0 \\
x^{2015} \left(x^{2}-1 \right )+x^{2014} \left(x^{2} -1 \right ) & =0 \\
\left( x^{2015}+x^{2014} \right ) \left(x^{2} -1 \right ) & =0 \\
x^{2014} \left( x +1 \right ) \left(x^{2} -1 \right ) & =0 \\
x^{2014} (x+1)(x+1)(x-1) & =0 \\
x=0;\ x=-1;\ x =1\ &
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(D)\ 3$
8. $A$ sanggup menuntaskan sendiri sebuah pekerjaan dalam waktu 2 jam, sedangkan $B$ sanggup menuntaskan pekerjaan yang sama dalam waktu 6 jam. Jika mereka berdua bekerja bersama-sama, maka usang pekerjaan itu sanggup selesai yakni ... jam
$\begin{align}
(A)\ & 1 \\
(B)\ & \dfrac{3}{2} \\
(C)\ & 3 \\
(D)\ & 4 \dfrac{1}{2}
\end{align}$
Waktu yang dibutuhkan $A$ menuntaskan "satu" pekerjaan yakni 2 jam maka kecepatan $A$ dalam menuntaskan pekerjaan sanggup kita tuliskan $v_{A}=\dfrac{1}{t}=\dfrac{1}{2}$.
Waktu yang dibutuhkan $B$ menuntaskan "satu" pekerjaan yakni 6 jam maka kecepatan $A$ dalam menuntaskan pekerjaan sanggup kita tuliskan $v_{B}=\dfrac{1}{t}=\dfrac{1}{6}$.
Jika mereka bekerja gotong royong maka waktu yang dibutuhkan adalah:
$\begin{align}
v_{A}+v_{B} & =\dfrac{1}{2}+\dfrac{1}{6} \\
& =\dfrac{3}{6}+\dfrac{1}{6} \\
& =\dfrac{4}{6} \\
\end{align}$
Karena kecepatan yakni $\dfrac{4}{6}$ maka waktu yang dibutuhkan yakni
$\begin{align}
v & =\dfrac{1}{t} \\
\dfrac{4}{6} & =\dfrac{1}{t} \\
t & =\dfrac{6}{4}=\dfrac{3}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ \dfrac{3}{2}$
9. Diketahui sistem persamaan:
$\begin{align}
3a+7b+c & = 315 \\
4a+10b+c & = 420
\end{align}$
Maka nilai $a+b+c$ adalah...
$\begin{align}
(A)\ & 100 \\
(B)\ & 105 \\
(C)\ & 110 \\
(D)\ & 150
\end{align}$
Jika kedua persamaan diatas kita kurangkan maka akan kita peroleh
$\begin{array}{c|c|cc}
3a+7b+c = 315 & \\
4a+10b+c = 420 & (-)\\
\hline
a + 3b = 105 &
\end{array} $
Dari persamaan $3a+7b+c = 315$ kita lakukan manipulasi aljabar sebagai berikut;
$\begin{align}
3a+7b+c & =315 \\
2a+a+6b+b+c & =315 \\
2a+6b+a+b+c & =315 \\
2(a+3b)+a+b+c & =315 \\
2(105)+a+b+c & =315 \\
a+b+c & =315-210 \\
a+b+c & =105
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 105$
10. Diketahui $f$ fungsi real yang memenuhi $f(x+f(x))=4f(x)$ dan $f(1)=4$. Maka nilai $f(21)$ adalah...
$\begin{align}
(A)\ & 36 \\
(B)\ & 48 \\
(C)\ & 64 \\
(D)\ & 72
\end{align}$
Dari fungsi $f(x+f(x))=4f(x)$ dan $f(1)=4$ sanggup kita simpulkan:
untuk $x=1$ dan maka:
$\begin{align}
f(1+f(1)) & = 4f(1) \\
f(1+4) & = 4 \cdot 4\\
f(5) & = 16
\end{align}$
untuk $x=5$ dan maka:
$\begin{align}
f(5+f(5)) & = 4f(5) \\
f(5+16) & = 4 \cdot 16\\
f(21) & = 64
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 64$
11. SMP "Toba Sejahtera" hanya mempunyai empat jenis kegiatan olah raga sebagai kegiatan ekstrakurikulernya, yaitu bola voli, renang, dan basket. Ucok, Fulan, Butet, Berliana masing-masing yakni pemain olahraga yang berbeda. Olahraga yang dimainkan Fulan tidak menggunakan bola. Butet lebih renta dari pemain bola voli. Butet dan Berliana bukan pemain sepak bola. Siswa yang mengikuti kegiatan ekstrakurikuler bola voli adalah...
$\begin{align}
(A)\ & \text{Ucok} \\
(B)\ & \text{Fulan} \\
(C)\ & \text{Butet} \\
(D)\ & \text{Berliana}
\end{align}$
Dari informasi pada soal
- Fulan tidak menggunakan bola maka olahraga Fulan yakni renang.
- Butet dan Berliana bukan pemain sepak bola maka olahraga Ucok yakni sepakbola
- Butet lebih renta dari pemain bola voli maka Butet bukan pemain bola voli olahraga butet yakni basket
- Siswa yang olahraganya bola voli yakni Berliana
12. $6$ ekor sapi sanggup menghabiskan persediaan rumput selama $10$ hari, sedangkan $12$ ekor kambing sanggup menghabiskan persediaan rumput selama $20$ hari. Waktu yang dibutuhkan kalau persediaan rumput dimakan oleh $8$ ekor sapi dan $16$ ekor kambing secara bersamaan adalah...
$\begin{align}
(A)\ & 5\ \text{hari} \\
(B)\ & 6\ \text{hari} \\
(C)\ & 7\ \text{hari} \\
(D)\ & 8\ \text{hari}
\end{align}$
Dari informasi pada soal untuk sapi
Ekor | Hari |
$6$ | $10$ |
$8$ | $x$ |
\dfrac{6}{8} &= \dfrac{x}{10} \\
x &= \dfrac{60}{8}=\dfrac{15}{2}
\end{align}$
Dari informasi pada soal untuk kambing
Ekor | Hari |
$12$ | $20$ |
$16$ | $y$ |
\dfrac{12}{16} &= \dfrac{x}{20} \\
y &= \dfrac{60}{4}=15
\end{align}$
Dari kedua data diatas, $8$ sapi dan $16$ kambing melaksanakan pekerjaan bersama-sama:
$\begin{align}
v_{8}+v_{16} &= \dfrac{1}{\dfrac{15}{2}}+\dfrac{1}{15} \\
&= \dfrac{2}{15}+\dfrac{1}{15} \\
&= \dfrac{3}{15} \\
&= \dfrac{1}{5} \\
\end{align}$
Kecepatan bersama yakni $\dfrac{1}{t}=\dfrac{1}{5}$, maka waktu yang dibutuhkan yakni $5$ hari.
$\therefore$ Pilihan yang sesuai yakni $(A)\ 5\ \text{hari}$
13. Jika kebalikan dari $\dfrac{3}{10}$ yakni $(\dfrac{1}{x}+1)$. Maka nilai dari $x$ adalah...
$\begin{align}
(A)\ & \dfrac{7}{3} \\
(B)\ & \dfrac{3}{13} \\
(C)\ & \dfrac{3}{7} \\
(D)\ & \dfrac{5}{3}
\end{align}$
kebalikan dari $\dfrac{3}{10}$ yakni $(\dfrac{1}{x}+1)$
$\begin{align}
\dfrac{10}{3} &= \dfrac{1}{x}+1 \\
3\dfrac{1}{3} &= \dfrac{1}{x}+1 \\
2\dfrac{1}{3}+1 &= \dfrac{1}{x}+1 \\
\dfrac{7}{3}+1 &= \dfrac{1}{x}+1 \\
x &=\dfrac{3}{7}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{3}{7}$
14. Jika $a$ dan $b$ yakni penyelesaian dari sistem persamaan $\left\{\begin{matrix}
2020a+2020b=6050\\
2020a+2020b=6049
\end{matrix}\right.$ maka nilai $b^{2}-a^{2}$ adalah...
$\begin{align}
(A)\ & 2 \\
(B)\ & 3 \\
(C)\ & 4 \\
(D)\ & 5
\end{align}$
Jika kedua persamaan kita kurangkan, maka kita peroleh:
$\begin{array}{c|c|cc}
2020a+2020b=6050 & \\
2020a+2020b=6049 & (-)\\
\hline
-a+b=1 & \\
b-a=1 &
\end{array} $
Jika kedua persamaan kita tambahkan, maka kita peroleh:
$\begin{array}{c|c|cc}
2020a+2020b=6050 & \\
2020a+2020b=6049 & (+)\\
\hline
4033a+4033b=12099 & \\
a+b=3 & \\
b+a=3 &
\end{array} $
Nilai $b^{2}-a^{2}=(b+a)(b-a)=3 \cdot 1=3$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 3$
15. Ada tumpukan $16$ koin. Bagilah tumpukan ini menjadi empat tumpukan sehingga pada tumpukan ada sejumlah koin yang berbeda. Banyaknya koin minimal yang mungkin ada pada tumpukan koin yang tertinggi adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 6 \\
(C)\ & 8 \\
(D)\ & 10
\end{align}$
Dari $16$ koin akan dibagi menjadi 4 bab yang berbeda;
Cara paling dasar membaginya yakni menjadi sama banyak;
$4;\ 4;\ 4;\ 4;$
$4;\ 3;\ 5;\ 4;$
$3;\ 3;\ 5;\ 5;$
$2;\ 3;\ 5;\ 6;$
Banyaknya koin minimal yang mungkin ada pada tumpukan koin yang tertinggi yakni $6$.
$\therefore$ Pilihan yang sesuai yakni $(B)\ 6$
16. Sebuah fungsi $f$ terdefenisi pada himpunan bilangan Asli, dan mempunyai sifat:
$\begin{align}
f(1) & =3 \\
f(2x) & =4f(x)+1 \\
f(2x+1) & =f(x)+3x-5
\end{align}$
Nilai $f(11)=\cdots$
$\begin{align}
(A)\ & 12 \\
(B)\ & 24 \\
(C)\ & 48 \\
(D)\ & 96
\end{align}$
Untuk $x=1$ maka:
$\begin{align}
f(2x) & =4f(x)+1 \\
f(2) & =4f(1)+1 \\
& =4 \cdot 3+1 \\
& =12+1=13 \\
f(2x+1) & =f(x)+3x-5 \\
f(3) & =f(1)+3-5 \\
& =3+3-5=1 \\
\end{align}$
Untuk $x=2$ maka:
$\begin{align}
f(2x) & =4f(x)+1 \\
f(4) & =4f(2)+1 \\
& =4 \cdot 13+1 \\
& =52+1=53 \\
f(2x+1) & =f(x)+3x-5 \\
f(5) & =f(2)+6-5 \\
& =13+1=14 \\
\end{align}$
Untuk $x=5$ maka:
$\begin{align}
f(2x) & =4f(x)+1 \\
f(10) & =4f(5)+1 \\
& =4 \cdot 14+1 \\
& =64+1=65 \\
f(2x+1) & =f(x)+3x-5 \\
f(11) & =f(5)+15-5 \\
& =14+10=24 \\
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 24$
17. Diberikan empat bilangan lingkaran yang berurutan. Jika bilangan terkeci yakni $2m-1$, maka jumlah keempat bilangan tersebut adalah...
$\begin{align}
(A)\ & 8m-10 \\
(B)\ & 8m+8 \\
(C)\ & 8m+3 \\
(D)\ & 8m+2
\end{align}$
Empat buah bilangan berurutan yakni $a,\ a+1,\ a+2,\ a+3$
$(2m-1),\ (2m-1)+1,\ (2m-1)+2,\ (2m-1)+3$
$(2m-1),\ (2m),\ (2m+1),\ (2m+2)$
Jumlah keempat bilangan yakni $8m+2$
$\therefore$ Pilihan yang sesuai yakni $(D)\ 8m+2$
18. Diketahui $a$ dan $b$ bilangan orisinil yang memenuhi $a+b=14$ dan $a^{2}-b^{2}=28$. Maka nilai $a^{2}+b^{2}$ adalah...
$\begin{align}
(A)\ & 50 \\
(B)\ & 75 \\
(C)\ & 80 \\
(D)\ & 100
\end{align}$
$\begin{align}
a^{2}-b^{2} & =28 \\
(a+b)(a-b) & =28 \\
14(a-b) & =28 \\
(a-b) & =2 \\
(a-b)^{2} & =4 \\
a^{2}+b^{2}-2ab & =4 \\
a^{2}+b^{2} & =4+2ab
\end{align}$
$\begin{align}
a+b & =14 \\
(a+b)^{2} & =196 \\
a^{2}+b^{2}+2ab & =196 \\
4+2ab+2ab & =196 \\
4ab & =196-4=192 \\
ab & =\dfrac{192}{4}=48
\end{align}$
$a^{2}+b^{2} =4+2ab$
$a^{2}+b^{2} =4+96=100$
$\therefore$ Pilihan yang sesuai yakni $(D)\ 100$
19. Diberikan $a,\ b,\ c$ yakni anggota bilangan ril (nyata).
$\left.\begin{matrix}
a+b+c=7\\
\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{7}{10}
\end{matrix}\right\}$ maka nilai $\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\cdots$
$\begin{align}
(A)\ & \dfrac{19}{10} \\
(B)\ & \dfrac{21}{10} \\
(C)\ & \dfrac{23}{10} \\
(D)\ & \dfrac{25}{10}
\end{align}$
Dari kedua persamaan $a+b+c=7$ dan $\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{7}{10}$ kalau kita kalikan maka akan kita peroleh persamaan sebagai berikut:
$\begin{align}
\left ( 7 \right )\left (\dfrac{7}{10} \right ) & =\left ( a+b+c \right )\left (\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a} \right ) \\
\dfrac{49}{10} & = \dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a} \\
\dfrac{49}{10} & =\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b+c}{b+c}+\dfrac{b}{c+a}+\dfrac{a+c}{c+a} \\ \\
\dfrac{49}{10} & = 1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1 \\
\dfrac{49}{10} & = 3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \\
\dfrac{49}{10}-3 & = \dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \\
\dfrac{19}{10} & = \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ \dfrac{19}{10}$
20. Peserta upacara bendera yang dihadiri oleh $600$ siswa disusun dalam $x$ baris. Tiap barisnya diisi oleh $y$ siswa. Jika susunan diubah dengan menambah $5$ baris, maka tiap barisnya berkurang 6 siswa. Banyak baris sebelum diubah adalah...
$\begin{align}
(A)\ & 10 \\
(B)\ & 15 \\
(C)\ & 20 \\
(D)\ & 15
\end{align}$
Posisi awal tiap baris diisi oleh $y$ siswa maka barisan awal yakni $\frac{600}{x}=y$ atau $600=xy$.
Posisi kedua tiap baris diisi oleh $y-6$ siswa maka barisan kedua yakni $\frac{600}{x+5}=y-6$ atau
$\begin{align}
(x+5)(y-6) & =600 \\
xy-6x+5y-30 & =600 \\
-6x+5y -30 & =0 \\
-6x+5 \left (\dfrac{600}{x} \right ) -30 & =0\ \text{dikali}\ (x) \\
-6x^{2}+3000 -30x & =0\ \text{dibagi}\ (-6) \\
x^{2}+5x-500 & =0 \\
(x+25)(x-20) & =0 \\
x & = 20 \\
x & = -25\ \text{(TM)}
\end{align}$
Banyak baris sebelum diubah yakni $20$ kursi.
$\therefore$ Pilihan yang sesuai yakni $(C)\ 20$
21. Empat bola berjari-jari sama yaitu $10$ cm terletak di atas meja sedemikian sehingga sentra dari keempat bola membentuk bujur kandang bersisi $20$ cm. Bola kelima berjari-jari $10$ cm diletakkan di atasnya sehingga bola tersebut menyinggung keempat bola pertama. Tinggi sentra bola kelima dari meja adalah...cm
$\begin{align}
(A)\ & 10(\sqrt{2}+1) \\
(B)\ & 10(\sqrt{2}-1) \\
(C)\ & 9(\sqrt{2}+1) \\
(D)\ & 8(\sqrt{2}+1)
\end{align}$
Jika kita gambarkan ilustrasinya kurang lebih menyerupai berikut ini,
- PM yakni jarak sentra bola ke meja yakni $PE+EM$
- $EM$ yakni jari-jari bola yaitu $10$ cm
- $PC$ yakni 2 kali jari-jari bola yaitu $20$ cm.
- $EC$ yakni setengah diagonal persegi $ABCD$ yaitu $10\sqrt{2}$
- Dengan menggunakan teorema pythagoras
$PE=\sqrt{PC^{2}-EC^{2}}$
$PE=\sqrt{20^{2}-(10\sqrt{2})^{2}}$
$PE=\sqrt{400-200}$
$PE=\sqrt{200}$
$PE=10\sqrt{2}$ - $PM=PE+EM=10\sqrt{2}+10$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 10\sqrt{2}+10$
22. Perhatikan gambar berikut:
Meja segilima ditempatkan ujung ke ujung menyerupai gambar yan ditunjukkan untuk menciptakan satu meja besar. Satu orang duduk di setiap sisi terbuka dari segilima. Banyak orang sanggup duduk di meja besar kalau dibuat menggunkan lima segilima adalah...
$\begin{align}
(A)\ & 15 \\
(B)\ & 16 \\
(C)\ & 17 \\
(D)\ & 18
\end{align}$
Dari gambar meja yang disusun dar $3$ segilima banyak orang yang duduk yakni $4+3+4=11$ orang.
Jika meja dibuat dari $5$ segilima maka banyak orang yang sanggup duduk yakni $4+3+3+3+4=17$ orang.
$\therefore$ Pilihan yang sesuai yakni $(C)\ 17$
23. Perhatikan gambar berikut:
Gambar di atas merupakan segitiga siku-siku sama kaki $ABC$ dengan $AB=AC=6$. $SDPF$ merupaka persegi, maka luas persegi $SDPF$ adalah...
$\begin{align}
(A)\ & 6 \\
(B)\ & 8 \\
(C)\ & 10 \\
(D)\ & 12
\end{align}$
Segitiga $ABC$ dengan $AB=AC=6$ yakni segitiga siku-siku sama kaki, dengan menggunakan teorema pythagoras kita sanggup hitung $BC$ yaitu $6\sqrt{2}$.
$SDFP$ yakni persegi maka panjang $SD$ yang mungkin yakni $\frac{1}{3}BC$ yaitu $2\sqrt{2}$.
atau dengan mambagi sisi segitiga menjadi tiga bab yang sama dengan panjang $2$ cm menyerupai gambar berikut;
$\therefore$ Pilihan yang sesuai yakni $(B)\ 8$
24. Perhatikan gambar berikut:
Gambar bangkit di atas mempunyai keliling yang sama (semua bangkit datar tersebut merupakan segibanyak beraturan). Bangun datar yang mempunyai luas terkecil yakni nomor...
$\begin{align}
(A)\ & 1,\ 3,\ 6 \\
(B)\ & 3,\ 4,\ 5 \\
(C)\ & \text{Semua sama} \\
(D)\ & 1\ \text{saja}
\end{align}$
Eksplorasi dengan memisalkan keliling yakni $x$ cm.
- Untuk segitiga dengan panjang sisi $\frac{x}{3}$
$L=\frac{1}{2} ab\ sin\ 60^{\circ}=\frac{1}{2} \cdot \frac{x}{3}\cdot \frac{x}{3} \cdot \frac{1}{2}\sqrt{3}=\frac{x^2}{36}\sqrt{3}$ - Untuk segiempat dengan panjang sisi $\frac{x}{4}$
$L=s \cdot\ s=\frac{x}{4} \cdot \frac{x}{4}=\frac{x^2}{16}$ $\vdots $ - Untuk lingkaran dengan keliling $x$, maka $r=\frac{x}{2 \pi}$
$L=\pi \cdot\ r^{2}=\pi \cdot\ (x\frac{x}{2 \pi})^{2}$
$L=\pi \cdot\ \left(\frac{x}{2 \pi} \right)^{2}=\frac{x^{2}}{4 \pi}$
dengan menggunakan $\pi=3,14$ maka $L=\frac{x^{2}}{12,56}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 1\ \text{saja}$
25. Perhatikan gambar berikut:
Jika $3,\ 4,\ \text{dan}\ 6$ menawarkan luas masing-masing segitiga, maka luas kawasan yang diarsir adalah...
$\begin{align}
(A)\ & 9,5 \\
(B)\ & 10 \\
(C)\ & 11,5 \\
(D)\ & 13
\end{align}$
Untuk mempermudah segitiga diatas kita beri nama menyerupai berikut ini;
Perhatikan $\bigtriangleup BCD$ dan $\bigtriangleup BED$ dengan ganjal $BD$ dan $\bigtriangleup ACD$ dan $\bigtriangleup AED$ dengan ganjal $AD$;
$\dfrac{BD}{AD} =\dfrac{[BCD]}{[ACD]}=\dfrac{[BED]}{[AED]}$
$\dfrac{BD}{AD} =\dfrac{9}{[4+x+y]}=\dfrac{3}{x}$
$\dfrac{9}{4+x+y}=\dfrac{3}{x}$
$9x=12+3x+3y$
$6x-3y=12$
$2x-y=4$...(pers. I)
Perhatikan $\bigtriangleup CBF$ dan $\bigtriangleup CEF$ dengan ganjal $CF$ dan $\bigtriangleup ABF$ dan $\bigtriangleup AEF$ dengan ganjal $AF$;
$\dfrac{CF}{AF} =\dfrac{[CBF]}{[ABF]}=\dfrac{[CEF]}{[AEF]}$
$\dfrac{CF}{AF} =\dfrac{10}{3+x+y}=\dfrac{4}{y}$
$\dfrac{10}{3+x+y}=\dfrac{4}{y}$
$10y=12+4x+4y$
$6y-4x=12$
$3y-2x=6$...(pers. II)
Jika kedua persamaan diatas kita jumlahkan maka akan kita peroleh
$\begin{array}{c|c|cc}
2x-y=4 & \\
3y-2x = 6 & (+)\\
\hline
2y = 10 &
y = 5 & \\
2x-y=4 & \\
2x-5=4 & 2x=9 & \\
x=\dfrac{9}{2} &
\end{array} $
Luas kawasan yang diarsir yakni $x+y=\dfrac{9}{2}+5=9,5$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 9,5$
26. Perhatikan gambar berikut:
Diketahui persegi $ABCD$ menyerupai gambar di atas. Panjang sisi $AB$ yakni $2$, keliling kawasan yang diarsir adalah...
$\begin{align}
(A)\ & 2+\pi \\
(B)\ & 2+\dfrac{3}{2}\pi \\
(C)\ & 2+2\pi \\
(D)\ & 2+3\pi
\end{align}$
Jika kita perhatikan gambar di atas, keliling kawasan yang diarsir yakni
- satu sisi persegi yaitu $2$
- setengah lingkaran dengan jari-jari $1$, kelilingnya $\dfrac{2 \pi r}{2}=\pi$
- seperempat lingkaran dengan jari-jari $2$, kelilingnya $\dfrac{2 \pi r}{4}=\pi$
- total keliling yakni $2+\pi+\pi=2+2\pi$
27. Perhatikan gambar berikut:
Saya mempunyai persegi dengan panjang sisinya $10$. Saya memotong persegi tersebut sehingga berbentuk menyerupai gambar yang diarsir, keliling kawasan tersebut adalah...
$\begin{align}
(A)\ & 40 \\
(B)\ & 45 \\
(C)\ & 50 \\
(D)\ & 55
\end{align}$
Potongan yang dibuat di dalam persegi semuanya berupa persegi panjang sehingga tidak merubah keliling persegi semula yaitu $40$
Sebagai gambaran komplemen perhatikan gambar berikut:
$d+e+f=10$
$g+h+i=10$
$j+k+l=10$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 40$
28. Perhatikan gambar berikut:
Diketahui $ABCD$ dan $CEGH$ yakni dua persegi panjang kongruen dengan panjang $17$ cm dan lebar $8$ cm. Titik $F$ yakni titik potong sisi $AD$ dan $EG$. Luas segiempat $EFDC$ adalah...$cm^{2}$
$\begin{align}
(A)\ & 74,00 \\
(B)\ & 72,25 \\
(C)\ & 70,15 \\
(D)\ & 68,00
\end{align}$
$ABCD$ dan $CEGH$ yakni dua persegi panjang kongruen sehingga panjang $EC=CD=12$
Dengan menggunakan teorema pythagoras
$\begin{align}
BE &= \sqrt{EC^{2}-BC^{2}} \\
BE &= \sqrt{17^{2}-8^{2}} \\
BE &= \sqrt{289-64} \\
BE &= \sqrt{225}=15 \\
AE &= 2
\end{align}$
$\begin{align}
\dfrac{FG}{AF} & = \dfrac{DF}{EF} \\
\dfrac{8-\sqrt{x^{2}+4}}{x} & = \dfrac{8-x}{\sqrt{x^{2}+4}} \\
8\sqrt{x^{2}+4}-(x^{2}+4) & = 8x-x^{2} \\
8\sqrt{x^{2}+4} & = 8x-x^{2}+x^{2}+4 \\
8\sqrt{x^{2}+4} & = 8x+4 \\
2\sqrt{x^{2}+4} & = 2x+1 \\
sama-sama &\ dikuadratkan \\
4(x^{2}+4) & = 4x^{2}+4x+1 \\
4x^{2}+16 & = 4x^{2}+4x+1 \\
4x & = 15 \\
x & = \dfrac{15}{4}=3,75 \\
\end{align}$
Luas kawasan yang diarsir yakni $[CEI]+[FEJ]+DIJF$
$=\dfrac{15 \cdot 8}{2}+\dfrac{2 \cdot 3,75}{2}+2 \cdot (8-3,75)$
$=60+ 3,75 +8,5$
$=72,25$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 72,25$
29. Perhatikan gambar berikut:
Nilai dari $\measuredangle A+\measuredangle B+\measuredangle C+\measuredangle D+\measuredangle E$ adalah...
$\begin{align}
(A)\ & 120^{\circ} \\
(B)\ & 150^{\circ} \\
(C)\ & 180^{\circ} \\
(D)\ & 300^{\circ}
\end{align}$
Jumlah sudut dalam segi$-n$ yakni $(n-2) \times 180^{\circ}$
Pada gambar terdapat sebuah segilima, jumlah sudut dalamnya yaitu $\measuredangle F+\measuredangle G+\measuredangle H+\measuredangle I+\measuredangle J=540$
- Pada $\bigtriangleup FDC$: $\measuredangle F=180^{\circ}-\measuredangle D-\measuredangle C$
- Pada $\bigtriangleup GAE$: $\measuredangle G=180^{\circ}-\measuredangle A-\measuredangle E$
- Pada $\bigtriangleup HBC$: $\measuredangle H=180^{\circ}-\measuredangle B-\measuredangle C$
- Pada $\bigtriangleup IAD$: $\measuredangle I=180^{\circ}-\measuredangle A-\measuredangle D$
- Pada $\bigtriangleup JBE$: $\measuredangle J=180^{\circ}-\measuredangle B-\measuredangle E$
$\measuredangle F+\measuredangle G+\measuredangle H+\measuredangle I+\measuredangle J=540$
$5 \times 180^{\circ}-(2\measuredangle A+2\measuredangle B+2\measuredangle C+2\measuredangle D+2\measuredangle E)=540$
$2\measuredangle A+2\measuredangle B+2\measuredangle C+2\measuredangle D+2\measuredangle E=900-540$
$2(\measuredangle A+\measuredangle B+\measuredangle C+\measuredangle D+\measuredangle E)=360$
$ \measuredangle A+\measuredangle B+\measuredangle C+\measuredangle D+\measuredangle E=180$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 180^{\circ}$
30. Perhatikan gambar berikut:
Panjang sisi persegi yang besar yakni $1$ satuan. Lima lingkaran mempunyai ukuran yang sama, maka panjang jari-jarinya adalah...
$\begin{align}
(A)\ & 0,183 \\
(B)\ & 0,211 \\
(C)\ & 0,238 \\
(D)\ & 0,312
\end{align}$
Luas persegi $1$ satuan luas dan di dalam terdapat 5 lingkaran yang kongruen, gambar kita beri titik komplemen kurang lebih menyerupai berikut ini:
Perhatikan $\bigtriangleup AOD$
$\begin{align}
OD^{2} &= OA^{2}+AD^{2} \\
(2r)^{2} &= (\dfrac{1}{2}-r)^{2}+r^{2} \\
4r^{2} &= \dfrac{1}{4}-r+r^{2}+r^{2} \\
4r^{2}-2r^{2}+r - \dfrac{1}{4} &= 0 \\
2r^{2}+r - \dfrac{1}{4} &= 0 \\
8r^{2}+4r - 1 &= 0
\end{align}$
$\begin{align}
r &= \dfrac{-b \pm \sqrt{b^{2}-4ac}}{2a} \\
r &= \dfrac{-4 \pm \sqrt{16-4(8)(-1)}}{2(8)} \\
r &= \dfrac{-4 \pm \sqrt{48}}{16} \\
r &= \dfrac{-4 \pm \sqrt4{3}}{16} \\
r &= \dfrac{-1 + \sqrt{3}}{4} \\
r &= \dfrac{-1 - \sqrt{3}}{4} \\
\end{align}$
Karena $r$ yakni jari-jari lingkaran maka yang memenuhui yakni
$r = \dfrac{-1 + \sqrt{3}}{4}$
$r = \dfrac{1}{4}(-1+\sqrt{3})$
$r=\dfrac{1}{4}(-1+1,73...)=0,18...$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 0,183$
31. Perhatikan gambar berikut:
jika besar $\measuredangle\ a=95^{\circ}$ dan $\measuredangle\ b=70^{\circ}$ maka selisih besar sudut $x$ dan $y$ adalah...
$\begin{align}
(A)\ & 25^{\circ} \\
(B)\ & 45^{\circ} \\
(C)\ & 65^{\circ} \\
(D)\ & 85^{\circ}
\end{align}$
$\measuredangle\ b = \measuredangle\ y$ alasannya yakni bertolak belakang.
$\measuredangle\ (180-a)+\measuredangle\ (180-x)+\measuredangle\ b = 180^{\circ}$
$\measuredangle\ 180- \measuredangle\ a+\measuredangle\ 180- \measuredangle x+\measuredangle b = 180^{\circ}$
$- \measuredangle\ a - \measuredangle\ x+\measuredangle\ b = -180^{\circ}$
$- \measuredangle\ a - \measuredangle\ x+\measuredangle\ y = -180^{\circ}$
$ - \measuredangle\ x+\measuredangle\ y = \measuredangle\ a -180^{\circ}$
$ - \measuredangle\ x+\measuredangle\ y = 95^{circ} -180^{\circ}$
$ - \measuredangle\ x+\measuredangle\ y = -85^{\circ}$
$\measuredangle\ x- \measuredangle\ y = 85^{\circ}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 85^{\circ}$
32. Perhatikan gambar berikut:
Nilai $x$ adalah...
$\begin{align}
(A)\ & 13^{\circ} \\
(B)\ & 39^{\circ} \\
(C)\ & 47^{\circ} \\
(D)\ & 55^{\circ}
\end{align}$
Dari gambar di atas sanggup kita ambil informasi sebagai berikut:
$\measuredangle\ 2x$ sehadap dengan $\measuredangle\ (180-(x+39))$ sehingga,
$ 2x = 180-(x+39)$
$2x = 180-x-39$
$2x+x = 141$
$3x = 141$
$x=47$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 47^{\circ}$
33. Tahun 1800-an Edward menyatakan bahwa $\pi=3,2$. Jika Edward menghitung volume bangkit di bawah ini, maka volume bangkit tersebut adalah...satuan volume.
$\begin{align}
(A)\ & 70,4 \\
(B)\ & 140,2 \\
(C)\ & 211,2 \\
(D)\ & 281,6
\end{align}$
Gambar di atas terdiri atas $2$ tabung, yaitu tabung I: $r=3$ dan $t=2$ dan tabung II: $r=1$ dan $t=4$.
Volume tabung
$\begin{align}
V_{t} & = V_{I} +V_{II}\\
& = \pi r_{I}^{2} t_{I} +\pi r_{II}^{2} t_{II} \\
& = \pi (3)^{2} \cdot 2 +\pi (1)^{2} \cdot 4 \\
& = 18 \pi + 4 \pi \\
& = 22 \pi \\
& = 22 (3,2) =70,4
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 70,4$
34. Sebuah akuarium berbentuk kubus mempunyai panjang rusuk $10\ cm$. Kedalam akuarium tersebut ditambahkan air hingga terisi $30 \%$. Kemudian sebuah tabung besi diletakkan di dalam wadah dengan posisi berdiri tegak sehingga air dalam akuarium naik $x\ cm$. Jika tinggi tabug $10\ cm$ dan luas ganjal tabung $40\ cm^{2}$, maka nilai $x=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & 3 \\
(C)\ & 4 \\
(D)\ & 5
\end{align}$
Kubus diisi air $30 \%$ berarti kubus berisi air sebanyak $30 \% \times 1000 = 300\ cm^{3}$, sehingga dengan ganjal kubus $100\ cm^{2}$ maka tinggi air yakni $3\ cm$.
Tinggi air mula-mula yakni $3\ cm$ dan sehabis tabung dimasukkan tinggi air naik $x\ cm$ sehingga volume air seakan-akan bertambah. Volume tabung yang mengakibatkan air naik sebesar $x\ cm$ yakni volume tabung yang terendam air.
Tinggi tabung yang terendam air yakni $(3+x)\ cm$ sehingga volume tabung yang masuk ke dalam air yakni $40(3+x)=(120+40x)\ cm^{3}$.
Setelah tabung masuk tinggi air naik $x\ cm$ sehingga volume kubus yang beirisi air sehabis tabung masuk yakni $100 (3+x)=(300+100x)\ cm^{3}$.
Kesimpulan yang sanggup kita ambil yakni Volume Air sehabis tabung masuk sama dengan volume tabung yang terendam air ditambah volume kubus mula-mula.
$\begin{align}
V_{akhir} & = V_{awal}+V_{tabung}\\
300+100x & = 300 +120+40x \\
100x-40x & = 420-300 \\
60x & = 120 \\
x & = \frac{120}{60}=2
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 2$
35. Ke dalam sebuah wadah berbentuk balok berukuran $4\ cm \times 10\ cm \times 14\ cm$ diisi air sebanyak $a\ cm^{3}$. Kemudian balok tersebut dimiringkan sehingga luas permukaan air dalam balok semakin besar (lihat gambar). Jika luas permukaan air ketika dimiringkan yakni $50\ cm^{2}$ maka nilai $a=\cdots$
$\begin{align}
(A)\ & 110 \\
(B)\ & 220 \\
(C)\ & 330 \\
(D)\ & 440
\end{align}$
Sebelum balok dimiringkan luas permukaan air yakni sama dengan luas ganjal yaitu $4 \times 10=40 cm^{2}$.
Banyak air yang diisi yakni $a\ cm^{3}=40t_{air}$.
Luas permukaan air sehabis dimiringkan yakni $50\ cm^{2}$ bertambah sebesar $10\ cm^{2}$ dari semula.
$\begin{align}
50 & = 10 \times (4+x) \\
50 & =40+10x \\
50-40 & =10x \\
10 & =10x \\
x & = 1
\end{align}$
Perhatikan $\bigtriangleup\ MPN$ dimana $MN=5$ yakni lebar permukaan air sehabis dimiringkan. Dengan menggunkana konsep teorema pythagoras kita sanggup menghitung $PN=3$.
Karena $PN=3$ dan $AN=7$ maka posisi air mula-mula tingginya yakni $4+\frac{3}{2}=5,5$. (*ketika balok dimiringkan tinggi air pada sisi balok ada yang bertambah dan ada yang berkurang)
Banyak air yang diisi yakni $a\ cm^{3}=40 \times 5,5=220\ cm^{3}$.
$\therefore$ Pilihan yang sesuai yakni $(B)\ 220$
36.
Data di atas menyatakan daftar tinggi tubuh empat orang sisiwa, yaitu Adi, Budi, Clara, Dedi, namun nama siswa tersebut tidak dicantumkan dalam diagram.
Diketahui Budi yakni siswa terpendek dan Dedi yakni siswa tertinggi. Clara lebih pendek dari Adi. Tentukan tinggi tubuh Adi.
$\begin{align}
(A)\ & 95\ cm \\
(B)\ & 118\ cm \\
(C)\ & 149\ cm \\
(D)\ & 158\ cm
\end{align}$
Dari diagram dan keterangan soal, kesimpulan yang sanggup kita ambil adalah:Budi yakni siswa terpendek: tinggi sekitar $95\ cm$
- Budi yakni siswa terpendek maka tinggi Budi sekitar $95\ cm$
- Dedi yakni siswa tertinggi maka tinggi Dedi sekitar $158\ cm$
- Clara lebih pendek dari Adi maka tingga clara sekitar $118\ cm$ dan tingg Adi sekitar $149\ cm$
37. Diketahui nilai terendah $5$ orang siswa berturut-turut yakni $80$ dan 90. Jika modus data tersebut yakni 85 maka rata-rata kelima siswa tersebut yang mungkin adalah...
$\begin{align}
(A)\ & 75 \\
(B)\ & 80 \\
(C)\ & 85 \\
(D)\ & 90
\end{align}$
Dengan menganalisa pilihan yang ada, maka balasan rata-rata kelima siswa yang mungkin yakni $85$, alasannya yakni nilai terendah $80$, tertinggi $90$ maka rata-ratanya niscaya berada diantara $80-90$.
Alternatif jawaban:
Misalkan nilai kelima orang siswa sehabis diurtkan yakni $80,\ x_{1},\ x_{2},\ x_{3},\ 90$.
Karena modus yakni $85$ maka kemungkinan-kemungkinan nilai rata-rata ada beberapa kemungkinan, antara lain;
- Jika nilai $80,\ 85,\ 85,\ 85,\ 90$ maka
$\bar{x}=\dfrac{80+85+85+85+90}{5}=85$ - Jika nilai $80,\ x_{1},\ 85,\ 85,\ 90$ maka
$\bar{x}=\dfrac{80+x_{1}+85+85+90}{5}=\dfrac{340+x_{1}}{5}$,
alasannya yakni nilai $80 \lt x_{1} \lt 85$ maka nilai $80 \lt \bar{x} \lt 85$ - Jika nilai $80,\ 85,\ 85,\ x_{3},\ 90$ maka
$\bar{x}=\dfrac{80+85+85+x_{3}+90}{5}=\dfrac{340+x_{1}}{5}$,
alasannya yakni nilai $85 \lt x_{3} \lt 89$ maka nilai $85 \lt \bar{x} \lt 90$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 85$
38. Perhatikan gambar dibawah ini:
Seekor semut berjalan dari $A$ ke $B$. Jika semut hanya sanggup bergerak ke kanan atau ke atas. Maka banyak cara berbeda dari titik $A$ ke $B$ adalah...
$\begin{align}
(A)\ & 7 \\
(B)\ & 12 \\
(C)\ & 20 \\
(D)\ & 35
\end{align}$
Proses jalan semus kita sajikan dalam gabar sebagai berikut, silahkan dinalar munculnya angka-angka pada gambar;
Soal menyerupai ini pernah diujikan pada Science Expo Sekolah Menengan Atas Unggul DEL, simak Soal dan Pembahasan Matematika SMP (*Science Expo Sekolah Menengan Atas Unggul DEL)
39. Dua buah dadu dilambungkan bersamaan. Peluang jumlah mata dadu $8$ atau $11$ adalah...
$\begin{align}
(A)\ & \dfrac{5}{36} \\
(B)\ & \dfrac{6}{36} \\
(C)\ & \dfrac{7}{36} \\
(D)\ & \dfrac{8}{36}
\end{align}$
Dua buah dadu dilambungkan banyak anggota semua kemungkinan yang mungkin muncul yakni $n(S)=36$ yaitu ${(1,1),(1,2), \cdots, (6,6)}$.
Jumlah mata dau yang diperlukan muncul yakni $(2,6),(3,5),(4,4),(5,3),(6,2)$ atau $(5,6),(6,5)$, banyaknya $n(E)=7$
$\begin{align}
P(E) & =\dfrac{n(E)}{n(S)} \\
& = \dfrac{7}{36}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{7}{36}$
40. Gambar di bawah ini merupakan sebuah roda yang dibagi menjadi $24$ bagian. Pada sebuah acara, seseorang tamu memutar panah yang sanggup berhenti di sebarang bab roda;
Apabila terdapat $\dfrac{7}{24}$ bab tersebut berwarna biru, $\dfrac{1}{8}$ bab ungu, $\dfrac{5}{12}$ bab kuning dan sisanya berwarna merah. Jika seseorang memutar panah, maka warna yang paling sulit didapatkan yakni warna...
$\begin{align}
(A)\ & \text{biru} \\
(B)\ & \text{ungu} \\
(C)\ & \text{kuning} \\
(D)\ & \text{merah}
\end{align}$
Banyak bab warna yakni sebagai berikut:
- Biru: $\dfrac{7}{24} \times 24 =7$
- Ungu: $\dfrac{1}{8} \times 24 =3$
- Kuning: $\dfrac{5}{12} \times 24 =10$
- Merah: $24- (7+3+10) =4$
$\therefore$ Pilihan yang sesuai yakni $(B)\ \text{ungu}$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa soal yang kita diskusikan diatas sudah setara dengan soal-soal olimpiade matematika tingkat kabupaten, silahkan dicoba Soal dan Pembahasan OSN 2020 Tingkat Kabupaten Matematika SMP atau Soal dan Pembahasan OSN 2020 Tingkat Kabupaten Matematika SMP [Kode: OSN.KK.M.R4].
Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
- Soal Seleksi Akademik Matematika Ujian Masuk Sekolah Menengan Atas Unggul DEL tahun 2020 π Download
- Soal dan Pembahasan Seleksi Akademik Matematika Ujian Masuk Sekolah Menengan Atas Unggul DEL tahun 2020 π Download
- Soal Asli Seleksi Akademik Matematika Ujian Masuk Sekolah Menengan Atas Unggul DEL tahun 2020 π Download
Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
Video pilihan khusus untuk Anda π Cara Pilar (Pintar Bernalar) Perkalian Dua Angka Ciri Puluhan Sama dan Jumlah Satuan 10;
Belum ada Komentar untuk "✔ Soal Dan Pembahasan Seleksi Akademik Masuk Sma Unggul Del Laguboti Tahun 2020 (*Matematika Smp Hots)"
Posting Komentar