✔ Pak, Berapakah Sin 18 Derajat?

 Pertanyaan ini mengingatkanku pada bapak Benny Yong beberapa tahun yang kemudian ✔ Pak, Berapakah Sin 18 Derajat?
Pak, berapakah $sin\ 18^{\circ} ?$. Pertanyaan ini mengingatkanku pada bapak Benny Yong beberapa tahun yang lalu, yang pertama kali memperkenalkan bagaimana menghitung $sin\ 18^{\circ}$.

Selain menghitung $sin\ 18^{\circ}$, bapak Benny Yong juga memperkenalkan beberapa istilah dalam matematika, ada Eksplorasi, Telescoping, Harmonic Means (HM), Arithmetic Means (AM), Geometric Means (GM), Quadratic Means (QM), Pertidaksamaan Cauchy, Pertidaksamaan Renata dan lain sebagainya.

Sebelum kita coba menghitung nilai $sin\ 18^{\circ} $. Kita sudah mengetahui kisaran nilai yakni $0\ <\ sin\ 18\ <\ 1 $ dan beberapa data pendukung, antara lain;
  • $sin\ a=cos\ \left ( 90-a \right ) $
  • $sin\ \left ( a+b \right )=sin\ a\ cos\ b\ +\ Sin\ b\ cos\ a $
  • $cos\left ( a+b \right )=cos\ a\ cos\ b\ -\ sin\ a\ sin\ b $
  • $sin^{2}a+cos^{2}a=1 $
Sekarang kita coba mulai menghitung;
$sin\ 18$ memiliki korelasi (sudut berelasi) dengan $sin\ 36,\ sin\ 54,\ cos\ 36,\ dan\ cos\ 54$.
Dari beberapa sudut berelasi diatas kita gunakan beberapa, yaitu $cos\ 36,\ dan\ sin\ 54$
$cos\ 36=cos\ \left (18+18 \right )$
$cos\ 36=cos^{2}18-sin^{2}18 $
$cos\ 36=\left (1-sin^{2}18 \right )-sin^{2}18 $
$cos\ 36=1-2sin^{2}18$

$sin\ 54=\left ( 18+36 \right ) $
$sin\ 54=sin\ 18\ cos\ 36\ +\ Sin\ 36\ cos\ 18$
$sin\ 54=sin18 \left(1-2sin^{2}18 \right)+\left(2sin18\cos18\right)cos18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ cos^{2} 18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ \left (1-sin^{2}18 \right )$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ -2sin^{3}18$
$sin\ 54=3sin\ 18\ -4sin^{3}18$

Berikut kita samakan;
$cos\ 36=sin\ 54$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$

Untuk mempermudah penulisan, kita misalkan saja $sin\ 18\ =\ p$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$
$1-2p^{2}=3p -4p^{3}$
$4p^{3}-2p^{2}-3p+1=0$
$\left (4p^{2}+2p-1 \right )\left (p-1 \right )=0$

Untuk $\left (p-1 \right )=0$ Tidak Memenuhi (TM) alasannya yakni dari persamaan ini kita peroleh nilai $p=1$ dan $sin\ 18=1$, menyerupai yang kita tahu bahwa ini tidak sesuai dengan kisaran nilai $sin\ 18$.

Sekarang kita hanya konsentrasi kepada $\left (4p^{2}+2p-1 \right )=0$
Untuk mendapat nilai p, kita memakai rumus abc,
$p_{12}=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}$
$p_{12}=\frac{-2\pm \sqrt{2^{2}-4\cdot 4\cdot \left (-1 \right )}}{2\left (4 \right )}$
$p_{12}=\frac{-2\pm \sqrt{4+16}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=-\frac{1}{4}\pm \frac{1}{4}\sqrt{5}$

Dari persamaan diatas kita peroleh dua nilai $p$
$p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$
$p_{2}=-\frac{1}{4} - \frac{1}{4}\sqrt{5}$

Dari dua nilai diatas, nilai $p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$ bernilai nyata sedangkan $p_{2}=-\frac{1}{4} - \frac{1}{4}\sqrt{5}$ bernilai negatif, dan $sin\ 18^{\circ} $ berada pada kuadran yang pertama sehingga nilai $sin\ 18^{\circ} -\frac{1}{4} + \frac{1}{4}\sqrt{5}$.

Saran, kritik atau masukan yang sifatnya membangun terkait persoalan alternatif penyelesaian Berapakah Sin 18 Derajat? sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜ Bentuk akar dengan video berikut mungkin dapat menambah pemahaman;
 Pertanyaan ini mengingatkanku pada bapak Benny Yong beberapa tahun yang kemudian ✔ Pak, Berapakah Sin 18 Derajat?

Belum ada Komentar untuk "✔ Pak, Berapakah Sin 18 Derajat?"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel