✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama Yasop) - Sman 2 Balige 2005

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Catatan calon guru yang kita diskusikan ketika ini akan membahas Soal Matematika Seleksi Akademik masuk Asrama Yayasan Soposurung (YASOP) Balige tahun 2005. Seleksi akademik masuk asrama Yayasan Soposurung Balige yaitu seleksi tahap awal, selanjutnya akan ada beberapa tahapan seleksi, antara lain Psikologi, Kesehatan, Samapta dan dilanjutkan dengan Wawancara. Siswa yang dinyatakan lolos seleksi hingga tahap akhir, akan diterima untuk tinggal di asrama Yayasan Soposurung Balige dan bersekolah di SMAN 2 Balige.

Asrama Yayasan Soposurung (YASOP) Balige yaitu salah satu yayasan yang konsisten dalam memajukan pendidikan di Indonesia khususnya pendidikan di Sumatera Utara, sehingga setiap tahun siswa yang ikut seleksi masuk Asrama Yayasan Soposurung Balige selalu meningkat. Peminat yang ikut seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige setiap tahun bukan hanya dari Sumatera Utara saja, tetapi dari banyak sekali provinsi yang ada di Indonesia.

Karena para siswa yang berminat masuk Asrama Yayasan Soposurung (YASOP) Balige berasal dari banyak sekali provinsi dan umumnya yaitu para juara di kelas sewaktu SMP, sehingga seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige ini menjadi tolak ukur SMP (SMP). Dengan kata lain "Jika siswa 'SMPN 2 Tarabintang' banyak masuk Asrama Yayasan Soposurung (YASOP) Balige maka dengan sendirinya 'SMPN 2 Tarabintang' yaitu SMP favorit atau SMP unggulan di mata masyarakat.

Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige tiap tahun yang diujikan juga terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi.

Meskipun perkembangan kurikulum dan teknologi menghipnotis perkembangan soal seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige setiap tahun, tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal yang sudah diujikan panitia Seleksi Akademik masuk Asrama Yayasan Soposurung pada tahun 2005 ini sangat baik dijadikan latihan dasar sebagai materi persiapan dan latihan dalam bernalar.

Mari kita diskusikan beberapa soal Seleksi Akademik Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige tahun 2005:
1. Jika $H$ yaitu himpunan bilangan ganjil antara $30$ dan $100$, maka $H$ memiliki anggota sebanyak...
$\begin{align}
(A).\ & 33 \\
(B).\ & 34 \\
(C).\ & 35 \\
(D).\ & 36
\end{align}$
Alternatif Pembahasan:

$H$ yaitu himpunan bilangan ganjil antara $30$ dan $100$
$H:\ \left\{31,\ 33,\ 35,\ \cdots 97,\ 99 \right \}$
Dengan menggunakan konsep barisan aritmatika, dimana $a=31$, $b=2$ dan $u_{n}=99$.
$\begin{align}
u_{n} & = a+(n-1)b \\
99 & = 31+(n-1)2 \\
99 & = 31+2n-2 \\
99 & = 29+2n \\
99-29 & = 2n \\
70 & = 2n \\
n & = \dfrac{70}{2}=35 \\
\end{align}$
$H$ memiliki anggota sebanyak $35$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 35$

2. Jangka waktu registrasi siswa gres dilaksanakan selama $100$ hari. Jika dibuka pada hari senin, maka hari pertama penutupan jatuh pada hari...
$\begin{align}
(A).\ & \text{Selasa} \\
(B).\ & \text{Rabu} \\
(C).\ & \text{Kamis} \\
(D).\ & \text{Jumat} \\
\end{align}$
Alternatif Pembahasan:

Jika kini hari senin maka seratus hari kemudian yaitu hari RABU.
$\dfrac{100}{7}=14\ \text{sisa}\ 2$
"artinya seratus hari lagi sama dengan dua hari lagi"

Karena yang ditanyakan yaitu hari pertama penutupan, maka jatuh pada hari sesudah hari rabu yaitu KAMIS.

$\therefore$ Pilihan yang sesuai yaitu $(C).\ \text{Kamis}$

3. Jika $x$ dan $y$ yaitu pasangan bilangan real yang memenuhi $\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{xy}$ maka $x-y=\cdots$
$\begin{align}
(A).\ & -2 \\
(B).\ & -1 \\
(C).\ & 1 \\
(D).\ & 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\dfrac{1}{x}-\dfrac{1}{y} & = \dfrac{1}{xy}\\
\dfrac{y-x}{xy} & = \dfrac{1}{xy} \\
y-x & = 1 \\
x-y & = -1 \\
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ -1$

4. Jika $N=\dfrac{2x-1}{x}$ dan $x$ bilangan real, maka $N$ mustahil bernilai...
$\begin{align}
(A).\ & 2 \\
(B).\ & 1 \\
(C).\ & 0 \\
(D).\ & -3
\end{align}$
Alternatif Pembahasan:

  • $\dfrac{2x-1}{x}=2$
    $2x-1=2x$
    $0=1$ (Tidak Memenuhi)
  • $\dfrac{2x-1}{x}=1$
    $2x-1=x$
    $x=1$
  • $\dfrac{2x-1}{x}=0$
    $2x-1=0$
    $2x=1$
    $x=\dfrac{1}{2}$
  • $\dfrac{2x-1}{x}=-3$
    $2x-1=-3x$
    $5x=1$
    $x=\dfrac{1}{5}$
$\therefore$ Pilihan yang sesuai yaitu $(A).\ 2$

5. Bilangan-bilangan disusun dan dikelompokkan berdasarkan pola:
$(2,6),\ (3,7), (4,8), (5,9), \cdots$ dan seterusnya.
Bilangan pada kelompok ke-62 adalah...
$\begin{align}
(A).\ & (61,65) \\
(B).\ & (62,66) \\
(C).\ & (63,67) \\
(D).\ & (64,68)
\end{align}$
Alternatif Pembahasan:

Dari pola bilangan yang diketahui $(2,6),\ (3,7),\ (4,8)\, (5,9), \cdots$ kita peroleh
$k_{1}=(2,6)$
$k_{2}=(3,7)$
$k_{3}=(4,8)$
$k_{4}=(5,9)$
$\vdots$
$k_{n}=(n+1,5+n)$
$k_{6}=(63,67)$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ (63,67)$

6. Diberikan rumus $\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$. maka nilai $\sqrt{18} \times \sqrt{12}=\cdots$
$\begin{align}
(A).\ & 6\sqrt{5} \\
(B).\ & 5\sqrt{6} \\
(C).\ & 6\sqrt{6} \\
(D).\ & 5\sqrt{5} \\
\end{align}$
Alternatif Pembahasan:

Dari sifat-sifat bentuk akar kita peroleh
$\begin{align}
\sqrt{a \times b} & =\sqrt{a} \times \sqrt{b} \\
\sqrt{18} \times \sqrt{12} & = \sqrt{18 \times 12} \\
\sqrt{18} \times \sqrt{12} & = \sqrt{216} \\
& = \sqrt{36 \times 6} \\
& = \sqrt{36} \times \sqrt{6} \\
& = 6 \sqrt{6}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 6\sqrt{6}$

7. Salah satu akar persamaan $ax^{2}+5x-3=0$ yaitu $x=-\dfrac{1}{2}$ maka $a$ harus bernilai...
$\begin{align}
(A).\ & 1 \\
(B).\ & 2 \\
(C).\ & 3 \\
(D).\ & 4
\end{align}$
Alternatif Pembahasan:

Dari konsep persamaan kuadrat sanggup kita simpulkan, alasannya salah akar $ax^{2}+5x-3=0$ yaitu $x=-\dfrac{1}{2}$ maka untuk $x=-\dfrac{1}{2}$ nilai berlaku $ax^{2}+5x-3=0$.
$\begin{align}
ax^{2}+5x-3 =0 \\
a \left( \dfrac{1}{2} \right)^{2}+5\left( \dfrac{1}{2} \right)-3 =0 \\
a \left( \dfrac{1}{4} \right)+\dfrac{5}{2}-3 =0 \\
a \left( \dfrac{1}{4} \right)+\dfrac{5}{2}-3 =0\ \ \ \text{dikali}\ 4\\
a +10 - 12 =0 \\
a -2 =0 \\
a =2 \\
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ 2 $

8. $1000001^{2}-999999^{2}=\cdots$
$\begin{align}
(A).\ & 4.000.000 \\
(B).\ & 4.000.100 \\
(C).\ & 4.010.000 \\
(D).\ & 4.100.000
\end{align}$
Alternatif Pembahasan:

Dari sifat-sifat bilangan berpangkat kita peroleh
$\begin{align}
x^{2}-y^{2} & = (x+y)(x-y) \\
1.000.001^{2}-999.999^{2} & = (1.000.001+999.999)(1.000.001-999.999) \\
& = (2.000.000)(2) \\
& = 4.000.000
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A).\ 4.000.000$

9. Jika $log\ 2=x$ dan $log\ 3=y$, maka $log\ 72=\cdots$
$\begin{align}
(A).\ & 3x+3y \\
(B).\ & 6xy \\
(C).\ & 2x+3y \\
(D).\ & 3x+2y
\end{align}$
Alternatif Pembahasan:

Dengan menggunakan sifat-sifat logaritma kita peroleh
$\begin{align}
log\ (xy) & = log\ x + log\ y \\
log\ (72) & = log\ (8 \times 9) \\
& = log\ 8 + log\ 9 \\
& = log\ 2^{3} + log\ 3^{2} \\
& = 3\ log\ 2 + 2\ log\ 3 \\
& = 3\ x + 2\ y
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D).\ 3x+2y$

10. Diketahui $P=x^{2}-6x+9$, $x$ bilangan real. Maka sanggup dipastikanbahwa nilai $P$ tersebut adalah...
$\begin{align}
(A).\ & \text{selalu posistif} \\
(B).\ & \text{selalu negatif} \\
(C).\ & \text{tidak pernah positif} \\
(D).\ & \text{tidak pernah negatif}
\end{align}$
Alternatif Pembahasan:

Berdasarkan konsep persamaan kuadrat atau manipulasi aljabar sanggup kita tentukan citra nilai $P$.
$\begin{align}
P & = x^{2}-6x+9 \\
& = \left( x-3 \right)^{2}
\end{align}$
Karena nilai $P=\left( x-3 \right)^{2}$ sehingga untuk $x$ bilangan real nilai $P$ tidak pernah negatif.

$\therefore$ Pilihan yang sesuai yaitu $(D).\ \text{tidak pernah negatif}$

11. Batas dari semua nilai $x$ yang menjadikan $\left( x^{2}+x-6 \right)$ bernilai negatif adalah...
$\begin{align}
(A).\ & -3 \lt x \lt 2 \\
(B).\ & -3 \leq x \leq 2 \\
(C).\ & x \lt -3\ \text{atau}\ x \gt 2 \\
(D).\ & x \leq -3\ \text{atau}\ x \geq 2
\end{align}$
Alternatif Pembahasan:

$\left( x^{2}+x-6 \right)$ bernilai negatif, maka sanggup kita tuliskan
$\begin{align}
x^{2}+x-6 & \lt 0 \\
(x+3)(x-2) & \lt 0 \\
\text{pembuat nol}\ x=-3\ & \text{atau}\ x=2 \\
\text{HP:}\ -3 \lt x \lt 2 &
\end{align}$
Jika belum paham untuk memilih Himpunan Penyelesaian diatas coba dibaca: Cara Kreatif Menentukan Himpunan Penyelesaian Pertidaksamaan Kuadrat.

$\therefore$ Pilihan yang sesuai yaitu $(A).\ -3 \lt x \lt 2$


12. Suatu pohon yang tingginya $24\ m$ memiliki bayangan di tanah sepanjang $18\ m$. Jika pohon pinus yang tinginya $60\ m$, maka bayangannya di tanah sepanjang...
$\begin{align}
(A).\ & 40\ m \\
(B).\ & 45\ m \\
(C).\ & 75\ m \\
(D).\ & 80\ m
\end{align}$
Alternatif Pembahasan:

Dengan menggunakan konsep perbandingan senilai maka kita peroleh:
$\begin{align}
\dfrac{t_{pohon}}{t_{pinus}} & = \dfrac{bayangan_{pohon}}{bayangan_{pinus}} \\
\dfrac{24}{60} & = \dfrac{18}{bayangan_{pinus}} \\
bayangan_{pinus} \times 24 & = 18 \times 60 \\
bayangan_{pinus} & = \dfrac{18 \times 60}{24} \\
bayangan_{pinus} & = 45
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 45\ m$

13. Pada kubus $ABCD.EFGH$ besar sudut $BEG$ adalah...
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$\begin{align}
(A).\ & 30^{\circ} \\
(B).\ & 45^{\circ} \\
(C).\ & 60^{\circ} \\
(D).\ & 80^{\circ}
\end{align}$
Alternatif Pembahasan:

Jika kita perhatikan $\bigtriangleup BEG$ pada kubus $ABCD.EFGH$ yaitu sebuah segitiga samasisi dengan panjang sisi yaitu diagonal sisi kubus yaitu $a\sqrt{2}$. Karena $\bigtriangleup BEG$ yaitu sebuah segitiga samasisi maka $\angle BEG=60^{\circ}$.

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 60^{\circ}$

14. Dari suatu kecelakaan diperoleh pernyataan:
"Semua penumpang tewas"
Setelah ditinjau eksklusif ke lokasi, ternyata pernyataan tersebut tidak benar. Maka sanggup dipastikan bahwa...
$\begin{align}
(A).\ & \text{Semua penumpang selamat} \\
(B).\ & \text{Semua penumpang tidak selamat} \\
(C).\ & \text{Ada penumpang yang tidak selamat} \\
(D).\ & \text{Ada penumpang yang selamat}
\end{align}$
Alternatif Pembahasan:

Karena pernyataan "Semua penumpang tewas" tidak benar, maka "Ada penumpang tidak tewas"

$\therefore$ Pilihan yang sesuai yaitu $(D).\ \text{Ada penumpang yang selamat}$

15. Tinggi sebuah kerucut sama dengan jari-jari alasnya. Jika volumenya $9 \pi$, maka diameter alasnya adalah...
$\begin{align}
(A).\ & 3 \\
(B).\ & 4 \\
(C).\ & 6 \\
(D).\ & 8
\end{align}$
Alternatif Pembahasan:

Volume kerucut yaitu $V_{k}=\dfrac{1}{3}\ \text{Luas Alas} \cdot \text{tinggi}$
$\begin{align}
V_{k} & =\pi\ r^{2}\ \cdot t \\
9 \pi & =\dfrac{1}{3}\ \pi\ r^{2}\ \cdot r \\
27 \pi & = \pi\ r^{3} \\
27 & = r^{3} \\
3 & = r \\
d & = 6
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 6$

16. Pada segitiga $ABC$ diketahui sudut $A=45^{\circ}$ dan $B=75^{\circ}$. Nilai $sin\ C=\cdots$
$\begin{align}
(A).\ & \dfrac{1}{2} \sqrt{2}\\
(B).\ & \dfrac{1}{2} \sqrt{3}\\
(C).\ & \dfrac{1}{2}\\
(D).\ & 1
\end{align}$
Alternatif Pembahasan:

jumlah sudut pada segitiga yaitu $180^{\circ}$, sehingga:
$\begin{align}
\angle A+\angle B+\angle C & =180^{\circ} \\
45^{\circ}+75^{\circ}+\angle C & =180^{\circ} \\
\angle C & =180^{\circ}-120^{\circ} \\
\angle C & =60^{\circ} \\
sin\ \angle C & =\dfrac{1}{2} \sqrt{3}\\\\
\end{align}$
[simak cara menghapal cepat nilai perbandingan trigonometri sudut istimewa]
$\therefore$ Pilihan yang sesuai yaitu $(C).\ \dfrac{1}{2} \sqrt{3}$

17. Jika sebuah segitiga siku-siku $ABC$ diketahui $sin\ A =\dfrac{5}{13}$ maka $cos\ A =\cdots$
$\begin{align}
(A).\ & \dfrac{5}{13} \\
(B).\ & \dfrac{12}{5} \\
(C).\ & \dfrac{12}{13} \\
(D).\ & \dfrac{13}{12}
\end{align}$
Alternatif Pembahasan:

Dari perbandingan trigonometri pada segitiga $ABC$, kita peroleh:

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Panjang dari $BC=5\ cm$, dan $AC=13\ cm$ m aka dengan menggunakan teorema phytagoras kita sanggup hitung $AB=12$.
Perbandingan trigonometri untuk sudut $ A $
BC: Sisi siku di depan sudut $ A $
AB: Sisi siku di samping sudut $ A $
AC: Sisi miring
$\begin{align}
sin\ A & =\dfrac{BC}{AC}=\dfrac{5}{13} \\
cos\ A & =\dfrac{AB}{AC}=\dfrac{12}{13} \\
tan\ A & =\dfrac{BC}{AB}=\dfrac{5}{12}
\end{align}$
JIka masih kesulitan memahami perbandingan trigonometri ini, coba disimak kembali Belajar Perbandingan Trigonometri Menjadi Mudah
$\therefore$ Pilihan yang sesuai yaitu $(D).\ \dfrac{12}{13}$

18. Sebuah kayu yang panjangnya $4\ m$ ditopang dengan tiang $T$ pada ujungnya. Agar kemiringan kayu mencapai $30^{\circ}$, maka tinggi tiang $T$ haruslah...
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$\begin{align}
(A).\ & 2\ m \\
(B).\ & 2\dfrac{1}{2}\ m \\
(C).\ & 3\ m \\
(D).\ & 3\dfrac{1}{2}\ m
\end{align}$
Alternatif Pembahasan:

Dengan memperhatikan gambar dan menggunakan Perbandingan Trigonometri kita sanggup menyimpulkan:
$\begin{align}
sin\ 30 & =\dfrac{Tiang}{kayu} \\
\dfrac{1}{2} & =\dfrac{T}{4\ m} \\
\dfrac{1}{2} \times 4\ m & =T \\
2\ m & =T
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A).\ 2\ m$

19. Jika $f(x-1)=2x+3$ maka $f(2)=\cdots$
$\begin{align}
(A).\ & 8 \\
(B).\ & 9 \\
(C).\ & 10 \\
(D).\ & 11
\end{align}$
Alternatif Pembahasan:

Dari fungsi $f(x-1)=2x+3$, yang ditanyakan yaitu $f(2)$ maka kita substitusi $x=3$ biar pada $f(x-1)$ kita peroleh $f(2)$.
$\begin{align}
f(x-1) & = 2x+3 \\
f(3-1) & = 2(3)+3 \\
f(2) & = 6+3 \\
f(2) & = 9
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ 9$

20. Untuk $x\neq 1$, maka bentuk $\dfrac{x^{2}-1}{x-1}$ sanggup disederhanakan menjadi...
$\begin{align}
(A).\ & x \\
(B).\ & 2x \\
(C).\ & x-1 \\
(D).\ & x+1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\dfrac{x^{2}-1}{x-1} & = \dfrac{(x+1)(x-1)}{x-1} \\
& = (x+1) \dfrac{(x-1)}{x-1} \\
& = (x+1)
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D).\ x+1$

21. Nilai $x$ yang memenuhi $\dfrac{4x+5}{2x+1}=\dfrac{16}{5}$ adalah...
$\begin{align}
(A).\ & \dfrac{3}{4} \\
(B).\ & \dfrac{3}{2} \\
(C).\ & \dfrac{2}{3} \\
(D).\ & \dfrac{4}{3}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\dfrac{4x+5}{2x+1} & = \dfrac{16}{5} \\
\dfrac{4x+5}{2x+1} & = \dfrac{16}{5} \\
5(4x+5) & = 16 (2x+1) \\
20x+25 & = 32x+16 \\
25-16 & = 32x-20x \\
9 & = 12x \\
x & = \dfrac{9}{12}=\dfrac{3}{4}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A).\ \dfrac{3}{4}$

22. Dari $20$ siswa diperoleh data bahwa $9$ siswa tidak suka jeruk, $7$ siswa tidak suka apel dan $7$ siswa suka jeruk maupun apel. Siswa yang tidak suka maupun apel sebanyak...
$\begin{align}
(A).\ & 3 \\
(B).\ & 4 \\
(C).\ & 5 \\
(D).\ & 6
\end{align}$
Alternatif Pembahasan:

Jika yang informasi pada soal kita sajikan dalam bentuk diagram venn, bentuknya kira-kira menyerupai berikut ini;

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
  • $9$ siswa tidak suka $J$ dan $x$ diantaranya juga tidak suka $A$, jadi yang hanya tidak suka $J$ yaitu $9-x$.
  • $7$ siswa tidak suka $A$ dan $x$ diantaranya juga tidak suka $J$, jadi yang hanya tidak suka $A$ yaitu $7-x$.
  • Siswa suka $J$ dan $A$ yaitu $7$
$\begin{align}
n(J \cup A) & =n(J)+n(A)-n(J \cap A) \\
20-x & =14-x + 16-x -7 \\
20-x & =23-2x \\
2x-x & =23-20 \\
x & =3
\end{align}$
Banyak siswa tidak suka $J$ maupun $A$ yaitu $3$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ 3$


23. Harga $3$ pesil dan $2$ buku sebesar $Rp7.600,00$. Sedangkan $2$ pensil dan $3$ buku seharga $Rp8.400,00$. Harga sebuah pensil sebesar...
$\begin{align}
(A).\ & Rp900,00 \\
(B).\ & Rp1.000,00 \\
(C).\ & Rp1.200,00 \\
(D).\ & Rp2.000,00
\end{align}$
Alternatif Pembahasan:

Misalkan: $\text{pensil}=p$ dan $\text{buku}=b$
$\begin{array}{c|c|cc}
3p+2b=7.600 & \times\ 3 \\
2p+3b=8.400 & \times\ 2 \\
\hline
9p+6b=22.800 & \\
4p+6b=16.800 & (-) \\
\hline
5p=6.000 \\
p=\dfrac{6.000}{5} \\
p=1.200
\end{array} $

$\therefore$ Pilihan yang sesuai yaitu $(C).\ Rp1.200,00$

24. Untu $x$ bilangan real, maka nilai terbesar dari $(3+4x-x^{2})$ adalah...
$\begin{align}
(A).\ & 10 \\
(B).\ & 9 \\
(C).\ & 8 \\
(D).\ & 7
\end{align}$
Alternatif Pembahasan:

Untuk mendapat nilai terbesar atau terkecil dari apa yang disampaikan diatas sanggup kita gunakan konsep fungsi kuadrat, alasannya $(3+4x-x^{2})$ berpangkat dua.

Aturan yang kita pakai dari fungsi kuadrat $f(x)=3+4x-x^{2}$ yaitu nilai $y_{p}$.
$\begin{align}
y_{p} & =-\dfrac{D}{4a} \\
y_{p} & =-\dfrac{b^{2}-4ac}{4a} \\
& =-\dfrac{4^{2}-4(3)(-1)}{4(-1)} \\
& =-\dfrac{16+12}{-4} \\
& =-\dfrac{28}{-4} \\
& =7
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D).\ 7$

25. Segitiga $ABC$ diketahui panjang $AB=4$, $AC=6$ dan sudut $\angle A=30^{\circ}$. Luas segitiga $ABC$ sama dengan...
$\begin{align}
(A).\ & 4 \\
(B).\ & 6 \\
(C).\ & 8 \\
(D).\ & 12
\end{align}$
Alternatif Pembahasan:

Jika kita gambar segitiga $ABC$ beserta dengan unsur-unsur yang diketahui, kurang lebih menyerupai berikut ini;

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Luas segitiga $ABC$ sanggup kita hitung dengan menggunakan luas segitiga jikalau diketahui satu sudut dua sisi.

$[ABC]=dfrac{1}{2} (AB)(AC)(sin\ A)$
$[ABC]=dfrac{1}{2} (4)(6)(sin\ 30)$
$[ABC]=(2)(6)(\dfrac{1}{2})$
$[ABC]=6$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ 6$

26. Garis $2x+3y=6$ dan sumbu $x$ membentuk sudut lancip $\theta$. Nilai $tan\ \theta=\cdots$
$\begin{align}
(A).\ & 2 \\
(B).\ & 3 \\
(C).\ & \dfrac{2}{3} \\
(D).\ & \dfrac{3}{2} \\
\end{align}$
Alternatif Pembahasan:

Jika kita gambar garis $2x+3y=6$ dan sudut lancip $\theta$, kurang lebih menyerupai berikut ini;

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Dari gambar di atas sanggup kita hitung
$\begin{align}
tan\ \theta & = \dfrac{AC}{BC} \\
& = \dfrac{2}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ \dfrac{2}{3}$

27. Jika peserta ujian nomor $41$ hingga $100$ mendapat hadiah masing-masing $2$ pensil, maka harus disediakan pensil sebanyak...
$\begin{align}
(A).\ & 116\ \text{buah} \\
(B).\ & 118\ \text{buah} \\
(C).\ & 120\ \text{buah} \\
(D).\ & 122\ \text{buah}
\end{align}$
Alternatif Pembahasan:

Peserta ujian nomor $41$ hingga $100$ akan diberi hadiah, banyak peserta yang akan diberi hadiah yaitu $(100-41)+1=60$. Banyak pensil yang disiapkan yaitu $60 \times 2 =120$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 120\ \text{buah}$

28. Nilai $\dfrac{log\ 8+log\ 4}{log\ 8-log\ 4}=\cdots$
$\begin{align}
(A).\ & 3 \\
(B).\ & 4 \\
(C).\ & 5 \\
(D).\ & 6
\end{align}$
Alternatif Pembahasan:

Dengan menggunakan sifat-sifat logaritma kita peroleh
$\begin{align}
& \dfrac{log\ 8+log\ 4}{log\ 8-log\ 4} \\
& = \dfrac{log\ (8 \times 4)}{log\ \dfrac{8}{4}} \\
& = \dfrac{log\ (8 \times 4)}{log\ \left( \dfrac{8}{4} \right)} \\
& = \dfrac{log\ 32}{log\ 2} \\
& = \dfrac{log\ 2^{5}}{log\ 2} \\
& = \dfrac{5 \times log\ 2}{log\ 2} \\
& = 5
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 5$

29. Segitiga $ABC$ menyerupai pada gambar di bawah ini:
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$DE$ sejajar $AB$
$AB=5$, $DE=3$, $CE=x$ dan $EB=y$.
Perbandingan $x:y=\cdots$
$\begin{align}
(A).\ & 5:4 \\
(B).\ & 3:4 \\
(C).\ & 2:3 \\
(D).\ & 3:2
\end{align}$
Alternatif Pembahasan:

Dari gambar kita peroleh informasi bahwa $\bigtriangleup CDE$ sebangun dengan $\bigtriangleup CAB$ sehingga berlaku:
$\begin{align}
\dfrac{DE}{AB} & = \dfrac{CE}{CB} \\
\dfrac{3}{5} & = \dfrac{x}{x+y} \\
3(x+y) & = 5x \\
3x+3y & = 5x \\
3y & = 5x-3x \\
3y & = 2x \\
\dfrac{x}{y} & = \dfrac{3}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D).\ 3:2$

30. Penyelesaian dari $x^{2} \lt 9$ adalah...
$\begin{align}
(A).\ & x \lt 3 \\
(B).\ & -3 \lt x \lt 3 \\
(C).\ & x \gt 3 \\
(D).\ & x \lt -3\ \text{atau}\ x \gt 2
\end{align}$
Alternatif Pembahasan:

$\begin{align}
x^{2} & \lt 9 \\
x^{2} - 9 & \lt 0 \\
(x+3)(x-3) & \lt 0 \\
\text{pembuat nol}\ x=-3\ & \text{atau}\ x=3 \\
\text{HP:}\ -3 \lt x \lt 3 &
\end{align}$
Jika belum paham untuk memilih Himpunan Penyelesaian diatas coba dibaca: Cara Kreatif Menentukan Himpunan Penyelesaian Pertidaksamaan Kuadrat.

$\therefore$ Pilihan yang sesuai yaitu $(B).\ -3 \lt x \lt 3$

31. Titik-titik $A,\ B,\ \text{dan}\ C$ terletak pada bulat yang berpusat di $P$. Jika $AB$ yaitu diameter bulat dan sudut $CAB=30^{\circ}$, maka sudut $CPB=\cdots$
$\begin{align}
(A).\ & 50^{\circ} \\
(B).\ & 60^{\circ} \\
(C).\ & 70^{\circ} \\
(D).\ & 80^{\circ}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan posisi titik pada bulat kurang lebih menyerupai berikut ini:

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Dari $\bigtriangleup CAB$ alasannya $CAB=30^{\circ}$ dan $ACB=90^{\circ}$ alasannya menghadap diameter sehingga $ABC=60^{\circ}$.
Dari $\bigtriangleup CPB$ alasannya $PB=PC=r$ maka $\bigtriangleup CPB$ sama kaki sehingga $ABC=PBC=PCB=60^{\circ}$.

$\therefore$ Pilihan yang sesuai yaitu $(B).\ 60^{\circ}$

32. Kota $A$ dan $B$ berjarak $162\ km$. Mobil $I$ berangkat pada pukul $10.00$ dari kota $A$ menuju $B$ dengan kecepatan $60\ km/jam$. Pada ketika yang sama kendaraan beroda empat $II$ berangkat dari kota $B$ menuju $A$ dengan kecepatan $75\ km/jam$. Kedua kendaraan beroda empat akan berpapasan pada pukul...
$\begin{align}
(A).\ & 10.42 \\
(B).\ & 10.56 \\
(C).\ & 11.12 \\
(D).\ & 11.45
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan posisi kendaraan beroda empat $I$ dan kendaraan beroda empat $II$ sebelum berangkat kurang lebih menyerupai berikut ini:

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Mobil $A$ berjalan sejauh $(162-x)\ km $ sesudah $t$ jam dengan kecepatan $60\ km/jam$.
Mobil $B$ berjalan sejauh $x\ km $ sesudah $t$ jam dengan kecepatan $75\ km/jam$.

Jarak yang ditempuh monbil $I$ dan $II$ sesudah berjalan selama $t$ jam adalah
$\begin{align}
\dfrac{162-x}{60} &=\dfrac{x}{75} \\
(162-x)(75) &= (x)(60) \\
12150-75x &= 60x \\
12150 &= 135x \\
x &= \dfrac{12150}{60}=90
\end{align}$
Mobil $II$ sesudah $t$ jam menempuh jarak $90\ km$, waktu yang diharapkan yaitu $t=\dfrac{90}{75}=\dfrac{6}{5}\ jam=01.12$.
Mobil $I$ dan $II$ bertemu pukul $10.00+01.12$ yaitu pukul $11.12$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 11.12$

33. Uang Ali dan uang Budi berbanding $3:5$ jikalau selisih uang Ali dan uang Budi $Rp1.000,00$ maka jumlah uang Ali dan Budi adalah...
$\begin{align}
(A).\ & Rp2.400,00 \\
(B).\ & Rp3.200,00 \\
(C).\ & Rp3.500,00 \\
(D).\ & Rp4.000,00
\end{align}$
Alternatif Pembahasan:

Perbandingan uang Ali dan Budi kita misalkan $3x:5x$, sehingga selisih uang mereka yaitu $5x-3x=1.000$, sehingga $2x=1.000$ dan $x=500$.
Uang Ali: $3x=1.500$
Uang Budi: $5x=2.500$
Jumlah uang mereka yaitu $1.500+2.500=4.000$

$\therefore$ Pilihan yang sesuai yaitu $(D).\ Rp4.000,00$


34. Nilai matematika dari $7$ orang siswa memiliki rata-rata $6,00$. Jika nilai Dono digabung, rata-ratanya menjadi $6,25$. Nilai Dono adalah...
$\begin{align}
(A).\ & 6 \\
(B).\ & 7 \\
(C).\ & 8 \\
(D).\ & 9
\end{align}$
Alternatif Pembahasan:

Nilai $7$ orang siswa dan rata-ratanya adalah
$\bar{x}=\dfrac{x_{1}+x_{2}+\cdots+x_{7}}{7}$
$6=\dfrac{x_{1}+x_{2}+\cdots+x_{7}}{7}$
$42= x_{1}+x_{2}+\cdots+x_{7} $

Nilai Dono ditambahkan sehingga rata-ratanya menjadi $6,25$
$\bar{x}=\dfrac{x_{1}+x_{2}+\cdots+x_{7}+x_{Dono}}{8}$
$6,25=\dfrac{x_{1}+x_{2}+\cdots+x_{7}+x_{Dono}}{8}$
$50= x_{1}+x_{2}+\cdots+x_{7}+x_{Dono} $
$50= 42+x_{Dono} $
$8= x_{Dono} $

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 8$

35. Gambar di samping merupakan jaring-jaring...
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$\begin{align}
(A).\ & \text{Kubus} \\
(B).\ & \text{Prisma} \\
(C).\ & \text{Limas} \\
(D).\ & \text{Kerucut}
\end{align}$
Alternatif Pembahasan:

Dari gambar yang ditampilkan yaitu berupa jaring-jaring prisma segitiga

$\therefore$ Pilihan yang sesuai yaitu $(B).\ \text{Prisma}$

36. Objek matematika berikut merupakan benda abstrak, kecuali...
$\begin{align}
(A).\ & \text{Garis} \\
(B).\ & \text{Lingkaran} \\
(C).\ & \text{Bilangan} \\
(D).\ & \text{Angka}
\end{align}$
Alternatif Pembahasan:

Dari empat objek matematika yang dituliskan diatas yang paling mendekati kepada sebuah benda yang tidak ajaib yaitu Lingkaran.
(Menurut KBBI: ajaib yaitu tidak berwujud; tidak berbentuk)

$\therefore$ Pilihan yang sesuai yaitu $(B).\ \text{Lingkaran}$

37. Nilai dari $4$ orang diketahui terendah $3$ dan tertinggi $9$. Dapat dipastikan bahwa rata-ratanya berada pada batas...
$\begin{align}
(A).\ & 3 \dfrac{1}{2} \leq \bar{x} \leq 6 \\
(B).\ & 4 \leq \bar{x} \leq 6\dfrac{1}{2} \\
(C).\ & 4 \dfrac{1}{2} \leq \bar{x} \leq 7\dfrac{1}{2} \\
(D).\ & 5 \leq \bar{x} \leq 7 \\
\end{align}$
Alternatif Pembahasan:

Nilai $4$ orang siswa terendah $3$ dan tertinggi $9$.

Kemungkinan $I$ rata-rata terendah:
$\bar{x}=\dfrac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$
$\bar{x}=\dfrac{3+3+3+9}{4}$
$\bar{x}=\dfrac{18}{4}=4,5$

Kemungkinan $II$ rata-rata tertinggi:
$\bar{x}=\dfrac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$
$\bar{x}=\dfrac{3+9+9+9}{4}$
$\bar{x}=\dfrac{30}{4}=7,5$

Rata-rata nilai selalu diantara atau sama dengan yang tertinggi dan yang terendah, yaitu $4 \dfrac{1}{2} \leq \bar{x} \leq 7\dfrac{1}{2}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 4 \dfrac{1}{2} \leq \bar{x} \leq 7\dfrac{1}{2}$

38. Dua buah bulat berjari-jari $5\ cm$ berpotongan di titik $A$ dan $B$ menyerupai gambar.
$KL$ melalui kedua sentra bulat dan tegak lurus $AB$. Jika jarak kedua sentra bulat yaitu $8\ cm$, maka luas segiempat $KBLA$ sama dengan...
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$\begin{align}
(A).\ & 18\ cm^{2} \\
(B).\ & 24\ cm^{2} \\
(C).\ & 48\ cm^{2} \\
(D).\ & 54\ cm^{2}
\end{align}$
Alternatif Pembahasan:

Dari gambar yang ditampilkan diatas, kita beri titik embel-embel yang mungkin membantu kita dalam perhitungannya,

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Dari apa yang disampaikan pada soal dan gambar diatas kita peroleh:
  • $P_{1}P_{2}=8\ cm$ sehingga $OP_{1}=4$.
  • $r=5$ maka $AP_{2}=5$ sehingga dengan menggunakan teorema pythagoras kita sanggup hitung $AP=3$.
  • $OP_{2}=4$ maka $OL=9$ dan $KL=8$
  • $[OAL]=\dfrac{1}{2}(OL)(OA)$$=\dfrac{1}{2}(9)(3)=\dfrac{27}{2}$
  • $[KBLA]=4 \times [OAL]$$=4 \times \dfrac{27}{2}=54$
$\therefore$ Pilihan yang sesuai yaitu $(D).\ 54\ cm^{2}$

39. Garis $g$ melalui titik $A$ dan menyinggung bulat $L$ di titik $S$. $P$ yaitu sentra bulat $L$ yang berjari-jari $3$. Jika sudut $PAS=30^{\circ}$, maka panjang $AP=\cdots$
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
$\begin{align}
(A).\ & 4 \\
(B).\ & 5 \\
(C).\ & 6 \\
(D).\ & 7
\end{align}$
Alternatif Pembahasan:

Dari gambar yang ditampilkan diatas, kita beri garis embel-embel yang mungkin membantu kita dalam perhitungannya,

 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Segitiga $APS$ yaitu segitiga siku-siku di titik $S$ alasannya $AS$ yaitu garis singgung bulat $L$.

Dengan menggunakan perbandingan trigonometri sederhana yaitu
$\begin{align}
sin\ 30^{\circ} & =\dfrac{SP}{AP} \\
AP & =\dfrac{SP}{sin\ 30^{\circ}} \\
& =\dfrac{3}{\dfrac{1}{2}} \\
& =6
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C).\ 6$

40. Grafik fungsi $f(x)=ax^{2}+bx+c$ dengan $a \neq 0$ menyerupai gambar dibawah ini.
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005
Berdasarkan hal diatas, maka...
$\begin{align}
(A).\ & a \gt 0 \\
(B).\ & b \gt 0 \\
(C).\ & c \lt 0 \\
(D).\ & c \gt 0
\end{align}$
Alternatif Pembahasan:

Dengan menggunakan sifat-sifat grafik fungsi kuadrat $y=ax^{2}+bx+c$, ciri-ciri grafik diatas adalah:

  • Grafik terbuka kebawah maka $a \lt 0$
  • Grafik memotong sumbu $y$ di titik $(0,0)$ maka $c=0$
  • Titik puncak grafik parabola berada di kanan maka $a \lt 0$ dan $b \gt 0$

$\therefore$ Pilihan yang sesuai yaitu $(B).\ b \gt 0$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
  • Soal Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005 πŸ‘€ Download
  • Soal dan Pembahasan Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005 πŸ‘€ Download
  • Soal Asli Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005 πŸ‘€ Download
Semoga Bermanfaat dan pembahasan Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005 di atas masih jauh dari sempurna, jadi jikalau ada masukan yang sifatnya membangun terkait problem alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan😊CMIIW

Jangan Lupa Untuk Berbagi πŸ™Share is Caring πŸ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda πŸ’— Gurunya Super Kreatif, Mengerjakan Perkalian Makara Kreatif;
 Seleksi Akademik Masuk Asrama YASOP SMAN  ✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2005

Belum ada Komentar untuk "✔ Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama Yasop) - Sman 2 Balige 2005"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel