✔ Berguru Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013

Belajar Induksi Matematika dari Buku Kurikulum  ✔ Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013Induksi Matematika menjadi viral lagi di dunia matematika sesudah sempat hilang dari peredaran. Sebenarnya bukan hilang sich "tetapi dihilangkan" oleh para guru atau para penerbit. Karena Induksi Matematika pada beberapa buku matematika KTSP masih ada tetapi bahan dianggap pada tahap pengayaan.

Materi pada tahap pengayaan dengan Bahasa Indonesia sehari-hari artinya sanggup diajarkan atau sanggup tidak diajarkan atau diajarkan pada siswa yang lebih menyenangi matematika.

Pada kurikulum 2013 induksi matematika dimunculkan kembali, menurut Permendikbud Tahun 2020 Nomor 024 Lampiran 16 yang mengatur perihal Kompetensi Inti dan Kompetensi Dasar Matematika Sekolah Menengan Atas disampaikan kompetensi dasar siswa salah satunya "Menjelaskan metode pembuktian Pernyataan matematis berupa barisan, ketidaksamaan, keterbagiaan dengan induksi matematika"

kompetensi Menjelaskan metode pembuktian Pernyataan matematis berupa barisan, ketidaksamaan, keterbagiaan dengan induksi matematika diperlukan tercapai pada kelas XI mata pelajaran matematika wajib.

Untuk mengingatkan kembali mari kita coba coret-coret lagi, dongeng usang perihal induksi matematika.

Pada buku Matematika SMU Kelas I untuk KBK dan Sistem Semester karangan Bapak Dr.Oki Neswan dan Bapak Dr.Wono Setya Budhi disampaikan bahwa teknik induksi matematika sangat sederhana.

Basis Induksi

Buktikan $P\left ( 1 \right )$ benar.

Langkah Induksi

Buktikan untuk tiap $k$ bilangan orisinil $P\left ( k \right ) \rightarrow P\left ( k+1 \right )$.

Mengapa kedua langkah di atas cukup untuk menunjukan tak berhingga buah pernyataan $P\left ( n \right )$?. Secara intuitif hal ini sanggup dijelaskan sebagai berikut:

Karena $P\left ( 1 \right )$ berlaku pada basis induksi dan $P\left ( 1 \right ) \rightarrow P\left ( 2 \right )$ juga berlaku pada langkah induksi, maka dengan Modus Ponens kita peroleh $P\left ( 2 \right )$ berlaku.
Tapi kita juga tahu bahwa $P\left ( 2 \right ) \rightarrow P\left ( 3 \right )$ benar, sehingga kembali dengan Modus Ponens, $P\left ( 3 \right)$ berlaku atau benar dan seterusnya.

Berapapun nilai $n$, kita sanggup membuktikannya dengan meneruskan proses ini hingga kita mencapai $P\left ( n \right )$ berlaku.

Jadi, kita telah menunjukan $P\left ( n \right )$ untuk tiap $n$ anggota bilangan asli, dengan induksi matematika.

Contoh:
Dengan Induksi Matematika Buktikan Bahwa $1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$

Misalkan $P\left ( n \right )$ ialah proposisi berikut;
$P\left ( n \right ):$$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1=\frac{1}{2}\left ( 1 \right )\left ( 1+1 \right )$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1+2=\frac{1}{2}\left ( 2 \right )\left ( 2+1 \right )$
$P\left ( 2 \right )$:$3=3$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

kita coba untuk $n=3$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 3 \right )$:$1+2+3=\frac{1}{2}\left ( 3 \right )\left ( 3+1 \right )$
$P\left ( 3 \right )$:$6=6$
$\therefore P\left ( 3 \right )$ berlaku atau benar.

Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku
$1+2+3+\cdots +k$=$\frac{1}{2}k\left ( k+1 \right )$

Selanjutnya, kita masuk pada langkah induksi.
Akan ditunjukkan pernyataan $P\left ( n \right )$ benar untuk $n=k+1$, yaitu:
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$$= \frac{1}{2}\left ( k+1 \right )\left ( k+1+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$$= \frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$

Dengan memanfaatkan keberlakuan sebelumnya ketika $n=k$, kita peroleh persamaan;
$1+2+3+\cdots +k+\left ( k+1 \right )$
$=$$1+2+3+\cdots +k$$+\left ( k+1 \right )$
$=$$\frac{1}{2}k\left ( k+1 \right )$$+\left ( k+1 \right )$
$=\left( k+1 \right )\left [\frac{1}{2}k+1\right ]$
$=\left( k+1 \right )\frac{1}{2} \left (k+2\right )$
$=\dfrac{1}{2} \left( k+1 \right ) \left (k+2\right )$
hingga pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1,2,3$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$ ialah berlaku atau benar (terbukti).

Soal latihan metode pembuktian pernyataan matematis berupa barisan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
Alternatif Pembahasan:

Langkah I
Misalkan $P\left ( n \right )$ ialah proposisi berikut;
$P\left ( n \right )$:$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{2}=\frac{1}{6}\left ( 1 \right )\left ( 1+1 \right )\left (2+1 \right)$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1^{2}+2^{2}$=$\frac{1}{6}\left ( 2 \right )\left ( 2+1 \right )\left (4+1 \right)$
$P\left ( 2 \right )$:$5=5$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

Langkah II
Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$=$\frac{1}{6}k\left ( k+1 \right )\left (2k+1 \right)$

Langkah III
Selanjutnya, kita masuk pada langkah induksi.
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar, yaitu:
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+1+1 \right )\left (2\left [ k+1 \right ]+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$

Dengan memanfaatkan keberlakuan sebelumnya ketika $n=k$, kita peroleh persamaan;
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$
=$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$$+\left ( k+1 \right )^{2}$
=$\frac{1}{6}\left ( k \right )\left ( k+1 \right )\left (2k+1 \right)$$+\left ( k+1 \right )^{2}$
=$\left ( k+1 \right )\left [\frac{1}{6}\left ( k\right ) \left (2k+1 \right)+\left ( k+1 \right )\right ]$
=$\left ( k+1 \right )\frac{1}{6}\left [\left ( k\right ) \left (2k+1 \right)+6\left ( k+1 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [\left (2k^2+k \right)+\left ( 6k+6 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [2k^2+k+6k+6\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left (2k^2+7k+6\right )$
=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$
hingga pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$ ialah benar (terbukti)


Soal latihan metode pembuktian pernyataan matematis berupa keterbagiaan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$n^{3}-n$ selalu Habis Dibagi (HD) oleh $6$ untuk setiap $n$ bilangan asli
Alternatif Pembahasan:

Langkah I
Misalkan $P\left ( n \right )$ ialah proposisi berikut;
$P\left ( n \right )$:$n^{3}-n$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{3}-1$
$P\left ( 1 \right )$:$0$ HD $6$
$\therefore P\left ( 1 \right )$ berlaku atau benar.

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$2^{3}-2$
$P\left ( 2 \right )$:$6$ HD $6$
$\therefore P\left ( 2 \right )$ berlaku atau benar.

Langkah II
Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$k^{3}-k$ HD $6$ atau dengan kata lain bahwa $k^{3}-k$ sebuah bilangan kelipatan $6$

Langkah III
Selanjutnya, kita masuk pada langkah induksi.
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar,
untuk $n=k+1$ maka $n^{3}-n$
$=\left ( k+1 \right )^{3}-\left ( k+1 \right )$
$=\left ( k+1 \right ) \left[ \left ( k+1 \right )^{2}-1 \right]$
$=\left ( k+1 \right ) \left[ k^{2}+2k\right]$
$=\left ( k+1 \right ) \left ( k \right )\left ( k+2 \right )$
$=\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$
untuk $k$ bilangan orisinil maka $\left ( k \right )$, $\left ( k+1 \right )$, dan $\left ( k+2 \right )$ ialah tiga bilangan orisinil berurutan.

Karena perkalian tiga bilangan orisinil berurutan selalu habis dibagi $6$ maka $\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$ HD $6$. Sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar, maka $n^{3}-n$ selalu Habis Dibagi oleh $6$ untuk setiap $n$ bilangan asli.


Soal latihan metode pembuktian pernyataan matematis berupa ketidaksamaan dengan induksi matematika:
Dengan induksi matematika buktikan pernyataan matematis ketidaksamaan
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$
Alternatif Pembahasan:

Misalkan $P\left ( n \right )$ ialah proposisi berikut;


$P\left ( n \right ): \dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$

Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 1 \right ) : \dfrac{1}{1^{2}} & \leq 2-\dfrac{1}{1} \\
P\left ( 1 \right ) : 1 & \leq 1 \\
\therefore P\left ( 1 \right )\ & \text{berlaku atau benar}.
\end{align}$

kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 2 \right ):\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}} & \leq 2-\dfrac{1}{2} \\
P\left ( 2 \right ) : 1\frac{1}{4} & \leq 1\frac{3}{4} \\
\therefore P\left ( 2 \right )\ & \text{berlaku atau benar}.
\end{align}$

kita coba untuk $n=3$ pada $P\left ( n \right )$ kita peroleh
$\begin{align}
P\left ( 3 \right ):\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}} & \leq 2-\dfrac{1}{3} \\
P\left ( 3 \right ) : 1\frac{13}{36} & \leq 1\frac{2}{3} \\
P\left ( 3 \right ) : 1\frac{13}{36} & \leq 1\frac{24}{36} \\
\therefore P\left ( 3 \right )\ & \text{berlaku atau benar}.
\end{align}$

Karena pernyataan $P\left ( n \right )$ benar untuk $n=1,2,3$, selanjutnya, kita anggap pernyataan $P\left ( n \right )$ benar untuk $n=k$, sehingga berlaku:
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{k^{2}} \leq 2-\dfrac{1}{k}$

Selanjutnya, kita masuk pada langkah induksi.
Akan ditunjukkan pernyataan $P\left ( n \right )$ benar untuk $n=k+1$, sehingga berlaku:
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{(k+1)^{2}} \leq 2-\dfrac{1}{k+1}$
Tetapi sebelum kita masuk pada tahapan induksi matematika, kita sanggup melaksanakan Eksplorasi aljabar: yaitu:
$\begin{align}
k\left (k+1 \right ) & \leq \left ( k+1 \right )\left ( k+1 \right ) \\
\frac{1}{k\left (k+1 \right )} & \geq \frac{1}{\left ( k+1 \right )\left ( k+1 \right )} \\
\frac{1}{k\left (k+1 \right )} & = \frac{1}{k}-\frac{1}{\left ( k+1 \right )}
\end{align}$

Pada ketidaksamaan $\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}} \leq 2-\dfrac{1}{k}$ ruas kiri dan ruas kanan sama-sama kita tambahkan $\dfrac{1}{\left ( k+1 \right )^{2}}$.

Sehingga ketidaksamaan menjadi $\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+$$\dfrac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\dfrac{1}{k}$+$\dfrac{1}{\left ( k+1 \right )^{2}}$

Begitu juga pada ketidaksamaan $\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} \leq \dfrac{1}{k\left (k+1 \right )}$ yang kita temukan pada tahap eksplorasi, ruas kiri dan ruas kanan sama-sama kita tambahkan $2-\dfrac{1}{k}$ sehingga ketidaksamaan menjadi menyerupai berikut ini:
$\begin{align}
\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} & \leq \dfrac{1}{k\left (k+1 \right )} \\
2-\dfrac{1}{k}+\dfrac{1}{\left ( k+1 \right )\left ( k+1 \right )} & \leq 2-\dfrac{1}{k}+\dfrac{1}{k\left (k+1 \right )} \\
2-\dfrac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{k}+\frac{1}{k}-\frac{1}{\left ( k+1 \right )} \\
2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Dengan memakai sifat ketidaksamaan jika $a \leq b$ dan $b \leq c$ maka $a \leq c$ pada ketidaksamaan yang kita peroleh yaitu:
$\begin{align}
\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{\left ( k+1 \right )^{2}} & \leq 2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} \\
2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Dapat kita simpulkan
$\begin{align}
\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{k^{2}}+\dfrac{1}{\left ( k+1 \right )^{2}} &\leq 2-\dfrac{1}{\left ( k+1 \right )}
\end{align} $
Sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.

$\therefore$ Karena untuk $n=1,2,3$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots+\dfrac{1}{n^{2}} \leq 2-\dfrac{1}{n}$ ialah berlaku atau benar (terbukti).


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Saran, Kritik atau Masukan yang sifatnya membangun terkait problem alternatif penyelesaian Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013 di atas sangat diharapkan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ’— Mengerjakan pembagian pecahan super keren;
Belajar Induksi Matematika dari Buku Kurikulum  ✔ Belajar Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013

Belum ada Komentar untuk "✔ Berguru Induksi Matematika Langkah Demi Langkah Pada Kurikulum 2013"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel