✔ Mencar Ilmu Modulo Dengan Cara Sederhana Selasa, 19 Juni 2018 Tambah Komentar Edit belajar matematika wacana statistika, soalnya kata modulo hampir ibarat dengan kata modus. Perkiraan awal ternyata salah, berguru modulo itu yaitu berguru wacana teori bilangan. Teori Bilangan yaitu salah satu mata kuliah yang diajarkan oleh Bapak Prof. Drs. B. Panjaitan pada dikala kuliah di Universitas Negeri Medan (UNIMED) beberapa tahun yang lalu. Tapi sayang waktu kuliah kemarin belajarnya tidak optimal, jadi kini coba dipelajari lagi semampunya. Mari kita mulai dari diktat kuning yang ditulis eksklusif oleh Bapak Prof. Drs. B. Panjaitan, dikatakan "Bilangan lingkaran $a$ membagi habis bilangan lingkaran $b$ [ditulis $a \mid b$] Bila dan hanya jikalau ada bilangan lingkaran $k$ sehingga $b=ak$. Jika $a$ tidak membagi habis $b$ maka ditulis $a \nmid b$" Contoh: $2 \mid 4$ alasannya untuk $k=7$ sehingga $2k=14$ $5 \mid 30$ alasannya untuk $k=6$ sehingga $5k=30$ $3 \nmid 10$ alasannya tidak ada nilai $k$ sehingga $3k=10$ hal sederhana diatas menjadi warta perhiasan bagi kita untuk mengenal modulo. Sebelum mempelajari modulo kita coba hal-hal sederhana berikutnya, contohnya dari pembagian $13:4=3\ sisa\ 1$, ada beberapa warta yang kita sanggup yaitu $(i)$ $13$ dibagi $4$ sisa $1$ dan $(ii)$ $4$ faktor $(13-1)$. Penulisan dengan memakai modulo warta $(i)$ $13$ dibagi $4$ sisa $1$ sanggup kita tulis menjadi $13\equiv 1\ mod\ (4)$. Contoh lain: $27\equiv 2\ mod\ \left ( 5 \right )$ artinya $27$ dibagi $5$ sisa $2$ $48\equiv 6\ mod\ \left ( 7 \right )$ artinya $48$ dibagi $7$ sisa $6$ $a\equiv b\ mod\ \left ( n \right )$ artinya $a$ dibagi $n$ sisa $b$ Hubungan modulo dengan keterbagian ibarat yang kita sebutkan diawal yaitu: $27\equiv 2\ mod\ \left ( 5 \right )$ $\Rightarrow$ $5 \mid (27-2)$ atau $5$ faktor dari $(27-2)$ $48\equiv 6\ mod\ \left ( 7 \right )$ $\Rightarrow$ $7 \mid (48-6)$ atau $7$ faktor dari $(48-6)$ $13\equiv 1\ mod\ \left ( 4 \right )$ $\Rightarrow$ $4 \mid (13-1)$ atau $4$ faktor dari $(13-1)$ Kesimpulan sederhana dari modulo ini lebih memperhatikan sisa pembagian dari pada hasil pembagian. Secara umum sanggup kita tuliskan $a\equiv b\ mod\ \left ( n \right )$ $\Rightarrow $ $n \mid (a-b)$ atau $n$ faktor dari $(a-b)$ Kita coba diskusikan beberapa teladan soal yang bisa dikerjakan dengan modulo, tetapi sebelumnya kita coba lihat teorema modulo berikut yang bisa kita terapkan pada soal yang berikutnya. $\left ( an+b \right )^{m}=\binom{m}{0}\left ( an \right )^{m}\cdot b^{0}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b^{1}+\cdots +\binom{m}{m}\left ( an \right )^{0}\cdot b^{m}$ $\left ( an+b \right )^{m}=\left ( an \right )^{m}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b^{1}+\cdots +b^{m}$ $\left ( an+b \right )^{m}=\overset{\underbrace{\left ( an \right )^{m}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b+\cdots }}{habis\ dibagi\ n}+b^{m}$ dengan memakai modulo sanggup kita tulis menjadi; $\left ( an+b \right )^{m}$ dibagi $n$ sisa $b^{m}$ atau $\left( an+b \right )^{m}\equiv b^{m}\ mod\ \left ( n \right )$. Untuk lebih jelasnya kita coba dengan beberapa teladan berikut; (1) Sisa $16^{2}$ dibagi $3$ adalah...$\left( 16 \right )^{2}= \left ( 5\cdot 3+1 \right )^{2}$ $\left( 16 \right )^{2}\equiv 1^{2}\ mod\ \left ( 3 \right )$ $\left( 16 \right )^{2}\equiv 1\ mod\ \left ( 3 \right )$ hasil simpulan sisa $16^{2}$ dibagi $3$ yaitu $1$. (2) Sisa $17^{20}$ dibagi $5$ adalah...$\left( 17 \right )^{20}= \left ( 5\cdot 3+2 \right )^{20}$ $\left( 17 \right )^{20}\equiv 2^{20}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (2^{3} \right )^{6}\cdot 2^{2}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 8^{6}\cdot 2^{2}$ $\left( 17 \right )^{20}\equiv \left (5+3 \right )^{6}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 3^{6}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 9^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (5+4 \right )^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (4 \right )^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (4 \right )^{4} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (16 \right )^{2} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (5 \cdot 3+1 \right )^{2} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (1 \right )^{2} mod\ \left ( 5 \right )$ hasil simpulan sisa $17^{20}$ dibagi $5$ yaitu $1$. Untuk mengerjakan soal modulo sangat dipengaruhi oleh tingkat kreativitas kita, sebagai teladan soal diatas bisa kita kerjakan dengan versi kreativitas yang berbeda, $\left( 17 \right )^{20}= \left ( 5\cdot 3+2 \right )^{20}$ $\left( 17 \right )^{20}\equiv 2^{20}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 4^{10}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (-1 \right )^{10}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 1^{10}\ mod\ \left ( 5 \right )$ Bentuk penulisan $13$ dibagi $4$ sisa $1$ yaitu $13\equiv 1\ mod\ \left ( 4 \right )$ untuk sementara bisa juga dituliskan $13\equiv -3\ mod\ \left ( 4 \right )$ tetapi pada hasil simpulan dituliskan kembali sisa pembagian yaitu nol atau bilangan lingkaran positif dan kurang dari pembagi. Soal berikut mungkin bisa jadi contoh; Sisa $2^{2015}$ dibagi $9$ adalah... $\left( 2 \right )^{2015}= \left( 2^{3} \right )^{671} \cdot 2^{2}$ $\left( 2 \right )^{2015}\equiv \left( 8 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv \left( -1 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv \left( -1 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv -4\ mod\ \left ( 9 \right ) $ $\left( 2 \right )^{2015}\equiv 5\ mod\ \left ( 9 \right ) $ Hasil simpulan sisa $2^{2015}$ dibagi $9$ yaitu $5$. Penjelasan Modulo diatas masih sangat sederhana, sebagai klarifikasi perhiasan bisa pelajari Panduan Pemula Belajar Aritmetika ModularπCMIIW Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ Video pilihan khusus untuk Anda π Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini; Bagikan Artikel ini
Belum ada Komentar untuk "✔ Mencar Ilmu Modulo Dengan Cara Sederhana"
Posting Komentar