✔ Persamaan Garis Singgung Bulat Dari Titik Pada Bulat
Lingkaran yakni kawasan kedudukan titik-titik yang berjarak sama terhadap sebuah titik tertentu yang terletak pada bidang datar [sebidang]. Jarak yang sama disebut jari-jari bulat dan sebuah titik tertentu disebut sentra lingkaran. Perkenalan singkat wacana lingkarannya mungkin sudah cukup, alasannya yang akan kita diskusikan disini yakni persamaan garis singgung bulat dari titik yang terletak pada lingkaran.
Permasalahan ini juga yang ditanyakan salah satu pelajar Indonesia yang sedang mempelajari wacana persamaan garis singgung bulat dari titik pada bulat di salah satu Forum Matematika.
Mari berdiskusi:
Misal persamaan garis adalah
$ g:\ y-y_{1}=m\left ( x-x_{1} \right )$
dan persamaan bulat adalah
$ L:\ \left (x-a \right )^{2}+\left (y-b \right )^{2}=r^{2} $
OP yakni jari-jari (r), dan garis OP melalui O (a,b) dan $ P\ \left ( x_{1},y_{1} \right )$ sehingga persamaannya sanggup kita bentuk sebagai berikut:
$ \frac{(y-y_1)}{(y_2-y_1 )}=\frac{(x-x_1)}{(x_2-x_1 )}$
$ \frac{(y-y_1)}{(b-y_1 )}=\frac{(x-x_1)}{(a-x_1 )}$
$(y-y_1 )(a-x_1 )=(x-x_1 )(b-y_1 )$
$ ay-x_1 y-ay_1+x_1 y_1=bx-x y_1-bx_1+x_1 y_1$
$ (a-x_1 )y=(b-y_1 )x-bx_1+x_1 y_1+ay_1-x_1 y_1$
Gradient OP, $ m_{OP}=\frac{(b-y_1)}{(a-x_1 )} $
Garis OP dan garis g saling tegak lurus sehingga:
$ m_{OP}\times m_{g}=-1 $
$ \frac{(b-y_1)}{(a-x_1 )}\times m_{g}=-1 $
$ m_{g}=\frac{x_1-a}{b-y_1}$
Persamaan garis g adalah
$ y-y_1 = m_g (x-x_1)$
$ y-y_1=\frac{x_1-a}{b-y_1} (x-x_1)$
$ (y-y_1 )(b-y_1 )=(x_1-a )(x-x_1 )$
$ by-yy_1-by_1+y_1^2=xx_1-x_1^2-ax+ax_1$
$ by-yy_1-by_1+y_1^2-xx_1+x_1^2+ax-ax_1=0$
$ x_1^2-xx_1+ax-ax_1+y_1^2-yy_1+by-by_1=0$
$ x_1^2-ax_1+y_1^2-by_1=xx_1-ax+yy_1-by . . .(1)$
Titik $ P (x_1,y_1 )$ pada bulat sehingga diperoleh persamaan:
$ (x_1-a)^2+(y_1-b)^2=r^2$
$ x_1^2-2ax_1+a^2+y_1^2-2by_1+b^2=r^2$
$ x_1^2-ax_1-ax_1+a^2+y_1^2-by_1-by_1+b^2=r^2$
$ x_1^2-ax_1+y_1^2-by_1=r^2-b^2-a^2+ax_1+by_1 . . .(2)$
Dari persamaan (1)dan (2) diperoleh:
$ xx_1-ax+yy_1-by=r^2-b^2-a^2+ax_1+by_1$
$ xx_1-ax+yy_1-by+b^2+a^2-ax_1-by_1=r^2$
$ xx_1-ax_1-ax+a^2+yy_1-by-by_1+b^2=r^2$
$ (x-a) x_1+(a-x)a+(y-b)y_1+(b-y)b=r^2$
$ (x-a) x_1-(x-a)a+(y-b) y_1-(y-b)b=r^2$
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2$
Kesimpulan:
Persamaan garis singgung bulat $ (x-a)^2+(y-b)^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bulat yakni :
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $
Jika Pusat bulat (0,0) maka kita substitusi nilai a=0 dan b=0 maka persamaan garis singgung bulat $ x^2+y^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bulat yakni :
$(x)(x_1 )+(y)(y_1 )=r^2$
Untuk Persamaan Lingkaran secara umum $ x^2+y^2+Ax+By+C=0 $
kita ketahui bahwa: $ a=-\frac{1}{2} A\ ;\ b=-\frac{1}{2} B\ ;\ r^{2}=\frac{1}{4}A^{2}+\frac{1}{4}B^{2}- C $
nilai $ a,\ b,\ dan\ r^2$ disubstitusikan ke $ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $
Sehingga kita peroleh persamaan:
$(x+\frac{1}{2} A)(x_1+\frac{1}{2} A)+(y+\frac{1}{2} B)(y_1+\frac{1}{2} B)=\frac{1}{4} A^2+\frac{1}{4} B^2-C $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+\frac{1}{4} B^2=\frac{1}{4} A^2+\frac{1}{4} B^2-C $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1$$+\frac{1}{4} B^2-\frac{1}{4} A^2-\frac{1}{4} B^2+C=0 $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $
Persamaan garis singgung bulat $ x^2+y^2+Ax+By+C=0 $ dari sebuah titik $ (x_1,y_1 )$ pada bulat yakni :
$ xx_1+ yy_1+ \frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $
Dikoreksi jikalau ada yang salah dan untuk mendownload file Download Persamaan Garis Singgung LingkaranπCMIIW
Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
Mari kita coba berguru geogebra dasar, menggambar grafik fungsi kuadrat;
Permasalahan ini juga yang ditanyakan salah satu pelajar Indonesia yang sedang mempelajari wacana persamaan garis singgung bulat dari titik pada bulat di salah satu Forum Matematika.
Mari berdiskusi:
Diketahui titik sentra bulat $O (a,b)$ dan sebuah titik $ P\ \left ( x_{1},y_{1} \right )$ pada lingkaranPenyelesaian:
Tentukan Persamaan garis singgung g yang melalui titik $ P\ \left ( x_{1},y_{1} \right )$
Misal persamaan garis adalah
$ g:\ y-y_{1}=m\left ( x-x_{1} \right )$
dan persamaan bulat adalah
$ L:\ \left (x-a \right )^{2}+\left (y-b \right )^{2}=r^{2} $
OP yakni jari-jari (r), dan garis OP melalui O (a,b) dan $ P\ \left ( x_{1},y_{1} \right )$ sehingga persamaannya sanggup kita bentuk sebagai berikut:
$ \frac{(y-y_1)}{(y_2-y_1 )}=\frac{(x-x_1)}{(x_2-x_1 )}$
$ \frac{(y-y_1)}{(b-y_1 )}=\frac{(x-x_1)}{(a-x_1 )}$
$(y-y_1 )(a-x_1 )=(x-x_1 )(b-y_1 )$
$ ay-x_1 y-ay_1+x_1 y_1=bx-x y_1-bx_1+x_1 y_1$
$ (a-x_1 )y=(b-y_1 )x-bx_1+x_1 y_1+ay_1-x_1 y_1$
Gradient OP, $ m_{OP}=\frac{(b-y_1)}{(a-x_1 )} $
Garis OP dan garis g saling tegak lurus sehingga:
$ m_{OP}\times m_{g}=-1 $
$ \frac{(b-y_1)}{(a-x_1 )}\times m_{g}=-1 $
$ m_{g}=\frac{x_1-a}{b-y_1}$
Persamaan garis g adalah
$ y-y_1 = m_g (x-x_1)$
$ y-y_1=\frac{x_1-a}{b-y_1} (x-x_1)$
$ (y-y_1 )(b-y_1 )=(x_1-a )(x-x_1 )$
$ by-yy_1-by_1+y_1^2=xx_1-x_1^2-ax+ax_1$
$ by-yy_1-by_1+y_1^2-xx_1+x_1^2+ax-ax_1=0$
$ x_1^2-xx_1+ax-ax_1+y_1^2-yy_1+by-by_1=0$
$ x_1^2-ax_1+y_1^2-by_1=xx_1-ax+yy_1-by . . .(1)$
Titik $ P (x_1,y_1 )$ pada bulat sehingga diperoleh persamaan:
$ (x_1-a)^2+(y_1-b)^2=r^2$
$ x_1^2-2ax_1+a^2+y_1^2-2by_1+b^2=r^2$
$ x_1^2-ax_1-ax_1+a^2+y_1^2-by_1-by_1+b^2=r^2$
$ x_1^2-ax_1+y_1^2-by_1=r^2-b^2-a^2+ax_1+by_1 . . .(2)$
Dari persamaan (1)dan (2) diperoleh:
$ xx_1-ax+yy_1-by=r^2-b^2-a^2+ax_1+by_1$
$ xx_1-ax+yy_1-by+b^2+a^2-ax_1-by_1=r^2$
$ xx_1-ax_1-ax+a^2+yy_1-by-by_1+b^2=r^2$
$ (x-a) x_1+(a-x)a+(y-b)y_1+(b-y)b=r^2$
$ (x-a) x_1-(x-a)a+(y-b) y_1-(y-b)b=r^2$
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2$
Persamaan garis singgung bulat $ (x-a)^2+(y-b)^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bulat yakni :
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $
Jika Pusat bulat (0,0) maka kita substitusi nilai a=0 dan b=0 maka persamaan garis singgung bulat $ x^2+y^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bulat yakni :
$(x)(x_1 )+(y)(y_1 )=r^2$
Untuk Persamaan Lingkaran secara umum $ x^2+y^2+Ax+By+C=0 $
kita ketahui bahwa: $ a=-\frac{1}{2} A\ ;\ b=-\frac{1}{2} B\ ;\ r^{2}=\frac{1}{4}A^{2}+\frac{1}{4}B^{2}- C $
nilai $ a,\ b,\ dan\ r^2$ disubstitusikan ke $ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $
Sehingga kita peroleh persamaan:
$(x+\frac{1}{2} A)(x_1+\frac{1}{2} A)+(y+\frac{1}{2} B)(y_1+\frac{1}{2} B)=\frac{1}{4} A^2+\frac{1}{4} B^2-C $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+\frac{1}{4} B^2=\frac{1}{4} A^2+\frac{1}{4} B^2-C $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1$$+\frac{1}{4} B^2-\frac{1}{4} A^2-\frac{1}{4} B^2+C=0 $
$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $
Persamaan garis singgung bulat $ x^2+y^2+Ax+By+C=0 $ dari sebuah titik $ (x_1,y_1 )$ pada bulat yakni :
$ xx_1+ yy_1+ \frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $
Dikoreksi jikalau ada yang salah dan untuk mendownload file Download Persamaan Garis Singgung LingkaranπCMIIW
Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
Mari kita coba berguru geogebra dasar, menggambar grafik fungsi kuadrat;
Belum ada Komentar untuk "✔ Persamaan Garis Singgung Bulat Dari Titik Pada Bulat"
Posting Komentar