✔ Arthur Benjamin: Keajaiban Bilangan Fibonacci
Mengapa kita mencar ilmu matematika. Pada dasarnya, lantaran tiga sebab: PERHITUNGAN, PENERAPAN, dan yang terakhir, yang sayangnya hal yang paling kita abaikan, INSPIRASI.
Matematika yaitu ilmu wacana pola dan kita mempelajarinya untuk mencar ilmu berpikir secara logis, kritis dan kreatif, namun matematika yang kita pelajari di sekolah tidak sanggup memotivasi para siswa dengan efektif, dan ketika mereka bertanya, "Mengapa kita mencar ilmu hal ini?" seringkali dikatakan bahwa lantaran mereka memerlukannya untuk kelas matematika atau ujian berikutnya.
Namun bukankah akan menjadi luar biasa jikalau setiap waktu kita mencar ilmu matematika hanya lantaran matematika itu indah atau menyenangkan, atau merangsang pikiran? Nah, aku tahu banyak orang tidak punya kesempatan untuk melihat bagaimana hal ini sanggup terjadi, jadi aku akan memperlihatkan rujukan singkat dengan koleksi bilangan favorit saya, Bilangan Fibonacci.
Nah, bilangan-bilangan ini sanggup dipahami dengan aneka macam cara. Dari sudut pandang perhitungan, bilangan ini gampang untuk dipahami ibarat satu ditambah satu, yaitu dua. Lalu satu ditambah dua, yaitu tiga, dua ditambah tiga yaitu lima, tiga ditambah lima yaitu delapan, dan seterusnya.
Orang yang kita kenal dengan nama Fibonacci bekerjsama berjulukan Leonardo dari Pisa, 'dan bilangan-bilangan ini muncul dalam bukunya "Liber Abaci," yang mengajarkan kepada Dunia Barat wacana metode aritmatika yang kita gunakan ketika ini Dalam penerapannya, Bilangan Fibonacci dijumpai di alam, sangat sering. Jumlah kelopak pada bunga biasanya merupakan Bilangan Fibonacci, atau jumlah bundar pada bunga matahari atau nanas juga cenderung merupakan Bilangan Fibonacci.
Nyatanya, ada banyak penerapan lain dari Bilangan Fibonacci, namun yang paling menginspirasi bagi aku yaitu pola indah yang ditunjukkan oleh bilangan itu. Mari aku tunjukkan salah satu favorit saya. Anggap saja Anda menyukai bilangan kuadrat, dan sejujurnya, siapa yang tidak suka?
Mari kita lihat kuadrat dari beberapa Bilangan Fibonacci pertama. Makara satu kuadrat yaitu satu, dua kuadrat yaitu empat, tiga kuadrat yaitu sembilan, lima kuadrat yaitu 25, dan seterusnya.
Nah, bukan kejutan bahwa jikalau Anda menambah dua Bilangan Fibonacci yang berurutan, Anda akan mendapat Bilangan Fibonacci berikutnya, bukan begitu? Begitulah bilangan itu dibuat.
Namun Anda tidak akan menyangka ada yang Istimewa jikalau Anda menambahkan kuadrat dari bilangan itu. Coba lihat, Satu ditambah satu menjadi dua dan satu ditambah empat yaitu lima. Lalu empat ditambah sembilan yaitu 13, sembilan ditambah 25 yaitu 34, dan pola itu berlanjut.
Sebenarnya, ada yang lain lagi. Anggaplah Anda ingin melihat penjumlahan kuadrat dari beberapa Bilangan Fibonacci pertama. Mari kita lihat apa yang terjadi. Makara satu ditambah satu ditambah empat yaitu enam, ditambah sembilan menjadi 15, ditambah 25 menjadi 40, ditambah 64 menjadi 104. Kini lihatlah bilangan-bilangan itu. Itu bukanlah Bilangan Fibonacci, namun jikalau Anda melihatnya lebih dekat, Anda akan melihat Bilangan Fibonacci yang tersembunyi di dalamnya.
Apakah Anda melihatnya? Mari aku tunjukkan.
Enam yaitu dua dikali tiga,
15 yaitu tiga dikali lima,
40 yaitu lima dikali delapan,
dua, tiga, lima, delapan, siapa yang kita pahami? Tentu saja Fibonacci!
Kini, yang tidak kalah menyenangkan dari menemukan pola-pola ini, yaitu lebih memuaskan untuk memahami mengapa pola-pola ini benar. Mari kita lihat pada persamaan terakhir.
Mengapa kuadrat dari satu, satu, dua, tiga, lima, dan delapan jikalau dijumlahkan sama dengan 8 dikali 13?
Saya akan menjelaskan dengan menggambar lukisan sederhana.
Kita mulai dari persegi 1 X 1,
kemudian aku menciptakan persegi 1 X 1 di sebelahnya.
Kini, ada segiempat 1 X 2.
Di bawahnya,
aku akan menciptakan persegi 2 X 2,
dan di sebelahnya, persegi 3 X 3,
di bawahnya, persegi 5 X 5,
kemudian persegi 8 X 8,
sekarang ada satu segiempat besar, bukan?
Lalu aku mempunyai satu pertanyaan sederhana: berapa luas dari segiempat ini? Di satu sisi itu yaitu jumlah luas dari persegi yang ada di dalamnya, bukan? Sama ibarat kita menciptakan bilangan itu. Satu kuadrat ditambah satu kuadrat ditambah dua kuadrat ditambah tiga kuadrat ditambah lima kuadrat ditambah delapan kuadrat, betul? Itulah luasnya. Di sisi lain, lantaran bentuknya segiempat, luasnya sama dengan panjang dikali lebar, dan panjangnya yaitu delapan dan lebarnya yaitu lima ditambah delapan yang merupakan Bilangan Fibonacci berikutnya, 13. Makara luasnya juga yaitu 8 dikali 13. Karena kita menghitung luasnya dengan benar melalui dua cara berbeda, hasil dari keduanya haruslah angka yang sama, dan lantaran itulah penjumlahan kuadrat dari satu, satu, dua, tiga, lima, dan delapan yaitu 8 dikali 13.
Kini jikalau kita melanjutkan proses ini, kita akan menciptakan segiempat berukuran 13 kali 21,
21 kali 34 dan seterusnya.
Kini lihat yang ini.
Jika Anda membagi 13 dengan 8 karenanya 1,625.
Dan jikalau Anda membagi bilangan yang lebih besar dengan yang lebih kecil karenanya akan menjadi semakin kecil sampai 1.618, yang dikenal oleh banyak orang sebagai "Rasio Emas," angka yang telah menciptakan kagum para matematikawan, ilmuwan, dan seniman selama berabad-abad.
Kini, aku memperlihatkan semua hal ini karena, ibarat kebanyakan dari ilmu matematika, ada cuilan sisi indahnya yang aku khawatir tidak mendapat perhatian yang cukup di sekolah-sekolah kita. Kita menghabiskan banyak waktu mempelajari perhitungan, namun kita jangan lupa wacana penerapannya, termasuk, mungkin penerapan yang paling penting, pembelajaran untuk berpikir.
Jika aku sanggup merangkum hal ini dalam sebuah kalimat, kalimat itu adalah:
Sebagai tambahan, mari kita simak video guru yang super kreatif ini, mengerjakan perkalian jadi kreatif;
Matematika yaitu ilmu wacana pola dan kita mempelajarinya untuk mencar ilmu berpikir secara logis, kritis dan kreatif, namun matematika yang kita pelajari di sekolah tidak sanggup memotivasi para siswa dengan efektif, dan ketika mereka bertanya, "Mengapa kita mencar ilmu hal ini?" seringkali dikatakan bahwa lantaran mereka memerlukannya untuk kelas matematika atau ujian berikutnya.
Namun bukankah akan menjadi luar biasa jikalau setiap waktu kita mencar ilmu matematika hanya lantaran matematika itu indah atau menyenangkan, atau merangsang pikiran? Nah, aku tahu banyak orang tidak punya kesempatan untuk melihat bagaimana hal ini sanggup terjadi, jadi aku akan memperlihatkan rujukan singkat dengan koleksi bilangan favorit saya, Bilangan Fibonacci.
Orang yang kita kenal dengan nama Fibonacci bekerjsama berjulukan Leonardo dari Pisa, 'dan bilangan-bilangan ini muncul dalam bukunya "Liber Abaci," yang mengajarkan kepada Dunia Barat wacana metode aritmatika yang kita gunakan ketika ini Dalam penerapannya, Bilangan Fibonacci dijumpai di alam, sangat sering. Jumlah kelopak pada bunga biasanya merupakan Bilangan Fibonacci, atau jumlah bundar pada bunga matahari atau nanas juga cenderung merupakan Bilangan Fibonacci.
Nyatanya, ada banyak penerapan lain dari Bilangan Fibonacci, namun yang paling menginspirasi bagi aku yaitu pola indah yang ditunjukkan oleh bilangan itu. Mari aku tunjukkan salah satu favorit saya. Anggap saja Anda menyukai bilangan kuadrat, dan sejujurnya, siapa yang tidak suka?
Nah, bukan kejutan bahwa jikalau Anda menambah dua Bilangan Fibonacci yang berurutan, Anda akan mendapat Bilangan Fibonacci berikutnya, bukan begitu? Begitulah bilangan itu dibuat.
Enam yaitu dua dikali tiga,
15 yaitu tiga dikali lima,
40 yaitu lima dikali delapan,
dua, tiga, lima, delapan, siapa yang kita pahami? Tentu saja Fibonacci!
Mengapa kuadrat dari satu, satu, dua, tiga, lima, dan delapan jikalau dijumlahkan sama dengan 8 dikali 13?
Kita mulai dari persegi 1 X 1,
kemudian aku menciptakan persegi 1 X 1 di sebelahnya.
Kini, ada segiempat 1 X 2.
Di bawahnya,
aku akan menciptakan persegi 2 X 2,
dan di sebelahnya, persegi 3 X 3,
di bawahnya, persegi 5 X 5,
kemudian persegi 8 X 8,
sekarang ada satu segiempat besar, bukan?
21 kali 34 dan seterusnya.
Kini lihat yang ini.
Jika Anda membagi 13 dengan 8 karenanya 1,625.
Dan jikalau Anda membagi bilangan yang lebih besar dengan yang lebih kecil karenanya akan menjadi semakin kecil sampai 1.618, yang dikenal oleh banyak orang sebagai "Rasio Emas," angka yang telah menciptakan kagum para matematikawan, ilmuwan, dan seniman selama berabad-abad.
Kini, aku memperlihatkan semua hal ini karena, ibarat kebanyakan dari ilmu matematika, ada cuilan sisi indahnya yang aku khawatir tidak mendapat perhatian yang cukup di sekolah-sekolah kita. Kita menghabiskan banyak waktu mempelajari perhitungan, namun kita jangan lupa wacana penerapannya, termasuk, mungkin penerapan yang paling penting, pembelajaran untuk berpikir.
Jika aku sanggup merangkum hal ini dalam sebuah kalimat, kalimat itu adalah:
Matematika bukan sekedar mencari nilai X, namun juga mencari tahu mengapa
Terima kasih banyak. [Arthur Benjamin] Sebagai tambahan, mari kita simak video guru yang super kreatif ini, mengerjakan perkalian jadi kreatif;
Belum ada Komentar untuk "✔ Arthur Benjamin: Keajaiban Bilangan Fibonacci"
Posting Komentar